Reduction in the model of a relativistic string for arbitrary dimension of Minkowski space
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 2, pp. 209-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the equations describing the dynamics of a classical relativistic string in $d$-dimensional space-time reduce to a system of $d-2$ nonlinear partial differential equations. These equations determine an embedding of a two-dimensional minimal surface in $d$-dimensional pseudo-Euclidean space. Two gauges used in string theory are considered: the timelike gauge and the relativistically invariant gauge.
@article{TMF_1984_59_2_a3,
     author = {B. M. Barbashov and V. V. Nesterenko and A. M. Chervyakov},
     title = {Reduction in the model of a relativistic string for arbitrary dimension of {Minkowski} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {209--219},
     year = {1984},
     volume = {59},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a3/}
}
TY  - JOUR
AU  - B. M. Barbashov
AU  - V. V. Nesterenko
AU  - A. M. Chervyakov
TI  - Reduction in the model of a relativistic string for arbitrary dimension of Minkowski space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 209
EP  - 219
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a3/
LA  - ru
ID  - TMF_1984_59_2_a3
ER  - 
%0 Journal Article
%A B. M. Barbashov
%A V. V. Nesterenko
%A A. M. Chervyakov
%T Reduction in the model of a relativistic string for arbitrary dimension of Minkowski space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 209-219
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a3/
%G ru
%F TMF_1984_59_2_a3
B. M. Barbashov; V. V. Nesterenko; A. M. Chervyakov. Reduction in the model of a relativistic string for arbitrary dimension of Minkowski space. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 2, pp. 209-219. http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a3/

[1] Lund F., Regge T., Phys. Rev., D14 (1976), 1524–1535 | MR | Zbl

[2] Omnes R., Nucl. Phys., B149 (1979), 269–284 | DOI | MR

[3] Barbashov B. M., Koshkarov A. L., TMF, 39:1 (1979), 27–34 | MR

[4] Barbashov B. M., Nesterenko V. V., Chervjakov A. M., J. Phys., A13 (1980), 301–312 | MR | Zbl

[5] Barbashov B. M., Nesterenko V. V., Chervjakov A. M., Commun. Math. Phys., 84 (1982), 471–481 | DOI | MR | Zbl

[6] Barbashov B. M., Nesterenko V. V., EChAYa, 9 (1978), 709–758 | MR

[7] Pohlmeyer K., Commun. Math. Phys., 46 (1976), 207–221 | DOI | MR | Zbl

[8] Eichenherr H., Pohlmeyer K., Phys. Lett., 89B (1980), 76–78

[9] Pohlmeyer K., Rehren K. H., J. Math. Phys., 20 (1979), 2628–2632 | DOI | MR

[10] Honerkamp J., J. Math. Phys., 22 (1981), 277–282 | DOI | MR

[11] Zakharov V. E., Takhtadzhyan L. A., TMF, 38:1 (1979), 26–35 | MR

[12] Golo V. L., Putko B. A., TMF, 45:1 (1980), 19–29 | MR

[13] Zakharov V. E., Mikhailov A. V., ZhETF, 74 (1978), 1953–1973 | MR

[14] Leznov A. N., Saveliev M. V., Lett. Math. Phys., 6 (1982), 505–510 | DOI | MR | Zbl

[15] Leznov A. N., Saveliev M. V., Commun. Math. Phys., 89 (1983), 59–75 | DOI | MR | Zbl