Reduction in the model of a relativistic string for arbitrary dimension of Minkowski space
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 2, pp. 209-219

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the equations describing the dynamics of a classical relativistic string in $d$-dimensional space-time reduce to a system of $d-2$ nonlinear partial differential equations. These equations determine an embedding of a two-dimensional minimal surface in $d$-dimensional pseudo-Euclidean space. Two gauges used in string theory are considered: the timelike gauge and the relativistically invariant gauge.
@article{TMF_1984_59_2_a3,
     author = {B. M. Barbashov and V. V. Nesterenko and A. M. Chervyakov},
     title = {Reduction in the model of a relativistic string for arbitrary dimension of {Minkowski} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {209--219},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a3/}
}
TY  - JOUR
AU  - B. M. Barbashov
AU  - V. V. Nesterenko
AU  - A. M. Chervyakov
TI  - Reduction in the model of a relativistic string for arbitrary dimension of Minkowski space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 209
EP  - 219
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a3/
LA  - ru
ID  - TMF_1984_59_2_a3
ER  - 
%0 Journal Article
%A B. M. Barbashov
%A V. V. Nesterenko
%A A. M. Chervyakov
%T Reduction in the model of a relativistic string for arbitrary dimension of Minkowski space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 209-219
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a3/
%G ru
%F TMF_1984_59_2_a3
B. M. Barbashov; V. V. Nesterenko; A. M. Chervyakov. Reduction in the model of a relativistic string for arbitrary dimension of Minkowski space. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 2, pp. 209-219. http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a3/