Lattice completely integrable regularization of the sine-Gordon model for small coupling constants
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 2, pp. 183-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of the vacuum state and the spectrum of single-particle excitations are investigated in the quantum lattice sine-Gordon model, which is a regularized version of the corresponding quantum-field model. The region of coupling constants $0<\gamma<\pi/2$ is considered.
@article{TMF_1984_59_2_a1,
     author = {N. M. Bogolyubov and A. G. Izergin},
     title = {Lattice completely integrable regularization of the {sine-Gordon} model for small coupling constants},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {183--199},
     year = {1984},
     volume = {59},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a1/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - A. G. Izergin
TI  - Lattice completely integrable regularization of the sine-Gordon model for small coupling constants
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 183
EP  - 199
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a1/
LA  - ru
ID  - TMF_1984_59_2_a1
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A A. G. Izergin
%T Lattice completely integrable regularization of the sine-Gordon model for small coupling constants
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 183-199
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a1/
%G ru
%F TMF_1984_59_2_a1
N. M. Bogolyubov; A. G. Izergin. Lattice completely integrable regularization of the sine-Gordon model for small coupling constants. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 2, pp. 183-199. http://geodesic.mathdoc.fr/item/TMF_1984_59_2_a1/

[1] Takhtadzhyan L. A., Faddeev L. D., TMF, 21:2 (1974), 160–174

[2] Faddeev L. D., Korepin V. E., Phys. Rep., 42C:1 (1978), 1–87 | DOI | MR

[3] Dashen R., Hasslacher B., Neveu A., Phys. Rev., 11:11 (1975), 3424–3450 | MR

[4] Coleman S., Phys. Rev., D11:8 (1975), 2088–2097

[5] Faddeev L. D., Kvantovye vpolne integriruemye zadachi teorii polya, Preprint LOMI ER-2–79, LOMI, L., 1979

[6] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., TMF, 40:2 (1979), 194–220 | MR

[7] Luther A., Phys. Rev., B14 (1976), 2153–2159 | DOI

[8] Izergin A. G., Korepin V. E., Vestn. LGU, 1981, no. 22, 84–87 | MR

[9] Izergin A. G., Korepin V. E., Nucl. Phys., B205, FS 5:3 (1982), 401–413 | DOI | MR

[10] Tarasov V. O., Zap. nauchn. semin. LOMI, 120, 1982, 173–187 | MR

[11] Bogolyubov N. M., TMF, 51:3 (1982), 344–354 | MR

[12] Takahashi M., Suzuki M., Progr. Theor. Phys., 48:6B (1972), 2187–2208 | DOI

[13] Bergknoff E., Thacker H. B., Phys. Rev., D19 (1979), 3666–3681 | MR | Zbl

[14] Korepin V. E., TMF, 41:2 (1979), 169–189 | MR

[15] Khinchin A. Ya., Tsepnye drobi, Nauka, M., 1978, 112 pp. | MR

[16] Izergin A. G., Korepin V. E., EChAYa, 13:3 (1982), 501–541 | MR

[17] Yang C. N., Yang C. P., J. Math. Phys., 10 (1969), 1115–1122 | DOI | MR | Zbl

[18] Takahashi M., Progr. Theor. Phys., 50:5 (1973), 1519–1536 | DOI

[19] Faddeev L. D., Takhtajan L. A., Phys. Lett., 85A:6 (1981), 375–377 | DOI | MR

[20] Korepin V. E., Commun. Math. Phys., 76 (1980), 165–176 | DOI | MR

[21] Tarasov V. O., Takhtadzhyan L. A., Faddeev L. D., TMF, 57:2 (1983), 163–181 | MR