Duality and froissart saturation
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 367-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dual approach to the Pomeron is discussed. It is argued that it can be realized on the basis of a dual analytic model and the method of continued unitarity. It is established that the behavior of the dual analytic model in the region between the elastic and inelastic cuts is determined by a Regge singularity with $\alpha(0)>1$. Its contribution, taken into account in the continued unitarity condition, leads to Froissart saturation of hadronic processes.
@article{TMF_1984_58_3_a5,
     author = {N. I. Glushko and N. A. Kobylinskii and E. S. Martynov and V. P. Shelest},
     title = {Duality and froissart saturation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--376},
     year = {1984},
     volume = {58},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a5/}
}
TY  - JOUR
AU  - N. I. Glushko
AU  - N. A. Kobylinskii
AU  - E. S. Martynov
AU  - V. P. Shelest
TI  - Duality and froissart saturation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 367
EP  - 376
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a5/
LA  - ru
ID  - TMF_1984_58_3_a5
ER  - 
%0 Journal Article
%A N. I. Glushko
%A N. A. Kobylinskii
%A E. S. Martynov
%A V. P. Shelest
%T Duality and froissart saturation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 367-376
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a5/
%G ru
%F TMF_1984_58_3_a5
N. I. Glushko; N. A. Kobylinskii; E. S. Martynov; V. P. Shelest. Duality and froissart saturation. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 367-376. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a5/

[1] Chew G. F., Rozenzweig C., Phys. Rep., 41:5 (1978), 163–327 | DOI

[2] Low F. E., Phys. Rev., D12:1 (1975), 163–173

[3] Nussinov S., Phys. Rev., D14:1 (1976), 246–257

[4] White A. R., Diffraction in accelerators, colliders and QCD, Preprint FERMILAB-82/16-THY, Batavia, Illinois, 1982

[5] Cohen-Tannoudji G., El Hassouni A., Kalinowski J., Peschanski R., Phys. Rev., D19:11 (1979), 3397–3412 | MR

[6] Vernov Yu. S., Mnatsakanova M. N., TMF, 52:2 (1982), 199–212 | MR

[7] Cheng H., Wu T. T., Phys. Rev. Lett., 24:25 (1970), 1456–1460 | DOI

[8] Finkelstein J., Zachariasen F., Phys. Lett., 24B:7 (1971), 631–634 | DOI

[9] Solovev L. D., Pisma v ZhETF, 19:3 (1974), 155–158

[10] Cardy J. L., Nucl. Phys., B75:3 (1974), 413–425 | DOI

[11] Volkovitskii P. E., Lapidus A. M., Lisin V. I., Ter-Martirosyan K. A., YaF, 24:6 (1976), 1237–1249

[12] Savrin V. E., Tyurin N. E., Khrustalev O. A., EChAYa, 7:1 (1976), 21–54 | MR

[13] Glushko N. I., Kobylinsky N. A., Elastic unitarity of direct channel and Froissart saturation, Preprint ITP-82–14E, ITP, Kiev, 1982

[14] Glushko N. I., Kobylinskii N. A., Martynov E. S., Shelest V. P., YaF, 38:1 (1983), 180–192 | MR

[15] Glushko N. I., Kobylinskii N. A., UFZh, 26:8 (1981), 1267–1272 | MR

[16] Freund P. G. O., Phys. Rev. Lett., 20:24 (1968), 1395–1398 | DOI

[17] Shelest V. P., Zinovev G. M., Miranskii V. A., Modeli silnovzaimodeistvuyuschikh elementarnykh chastits, t. II, Atomizdat, M., 1976

[18] Bugrij A. I., Jenkovszky L. L., Kobylinsky N. A., Shelest V. P., Lett. Nouvo Cim., 6:14 (1973), 577–582 | DOI

[19] Baker M., Coon D. D., Phys. Rev., D13:3 (1976), 707–712

[20] Kobylinsky N. A., Martynov E. S., Prognimak A. B., Interrelations between mesonic trajectories in the dual analytic model, Preprint ITP-78–92E, ITP, Kiev, 1978