Duality and froissart saturation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 367-376
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The dual approach to the Pomeron is discussed. It is argued that
it can be realized on the basis of a dual analytic model and the
method of continued unitarity. It is established that the behavior
of the dual analytic model in the region between the elastic and
inelastic cuts is determined by a Regge singularity with
$\alpha(0)>1$. Its contribution, taken into account in the
continued unitarity condition, leads to Froissart saturation of
hadronic processes.
			
            
            
            
          
        
      @article{TMF_1984_58_3_a5,
     author = {N. I. Glushko and N. A. Kobylinskii and E. S. Martynov and V. P. Shelest},
     title = {Duality and froissart saturation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--376},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a5/}
}
                      
                      
                    TY - JOUR AU - N. I. Glushko AU - N. A. Kobylinskii AU - E. S. Martynov AU - V. P. Shelest TI - Duality and froissart saturation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 367 EP - 376 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a5/ LA - ru ID - TMF_1984_58_3_a5 ER -
N. I. Glushko; N. A. Kobylinskii; E. S. Martynov; V. P. Shelest. Duality and froissart saturation. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 367-376. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a5/
