Multichannel Green's functions and perturbation theory for multichannel problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 338-342

Voir la notice de l'article provenant de la source Math-Net.Ru

An expression is obtained for the Green's function of an $n$-channel one-dimensional Sehrödinger equation in terms of $2n$ linearly independent solutions of this equation in the general case and in terms of n linearly independent and channel-independent solutions in the case of an Hermitian matrix of the potentials. If these solutions are known, the construction of the perturbation theory series reduces to quadratures.
@article{TMF_1984_58_3_a2,
     author = {A. I. Ignat'ev and V. S. Polikanov},
     title = {Multichannel {Green's} functions and perturbation theory for multichannel problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {338--342},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/}
}
TY  - JOUR
AU  - A. I. Ignat'ev
AU  - V. S. Polikanov
TI  - Multichannel Green's functions and perturbation theory for multichannel problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 338
EP  - 342
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/
LA  - ru
ID  - TMF_1984_58_3_a2
ER  - 
%0 Journal Article
%A A. I. Ignat'ev
%A V. S. Polikanov
%T Multichannel Green's functions and perturbation theory for multichannel problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 338-342
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/
%G ru
%F TMF_1984_58_3_a2
A. I. Ignat'ev; V. S. Polikanov. Multichannel Green's functions and perturbation theory for multichannel problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 338-342. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/