Multichannel Green's functions and perturbation theory for multichannel problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 338-342
Cet article a éte moissonné depuis la source Math-Net.Ru
An expression is obtained for the Green's function of an $n$-channel one-dimensional Sehrödinger equation in terms of $2n$ linearly independent solutions of this equation in the general case and in terms of n linearly independent and channel-independent solutions in the case of an Hermitian matrix of the potentials. If these solutions are known, the construction of the perturbation theory series reduces to quadratures.
@article{TMF_1984_58_3_a2,
author = {A. I. Ignat'ev and V. S. Polikanov},
title = {Multichannel {Green's} functions and perturbation theory for multichannel problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {338--342},
year = {1984},
volume = {58},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/}
}
TY - JOUR AU - A. I. Ignat'ev AU - V. S. Polikanov TI - Multichannel Green's functions and perturbation theory for multichannel problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 338 EP - 342 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/ LA - ru ID - TMF_1984_58_3_a2 ER -
A. I. Ignat'ev; V. S. Polikanov. Multichannel Green's functions and perturbation theory for multichannel problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 338-342. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/
[1] De Alfaro V., Redzhe T., Potentsialnoe rasseyanie, Mir, M., 1966, gl. 13 | Zbl
[2] Zhigunov V. P., Zakharev B. N., Metody silnoi svyazi kanalov v kvantovoi teorii rasseyaniya, Atomizdat, M., 1974
[3] Zeldovich Ya. B., ZhETF, 31 (1956), 1101
[4] Polikanov V. S., ZhETF, 52 (1967), 1326
[5] Aharonov Y., Au C. K., Phys. Rev. Lett., 42 (1979), 1582 | DOI | MR
[6] Toyoda K., Stientific Reports of Tohoku University, 24 (1935), 284–302 ; Пугачев В. С., Матем. сб., 15(57):1 (1944), 13 | Zbl | MR | Zbl