Multichannel Green's functions and perturbation theory for multichannel problems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 338-342
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An expression is obtained for the Green's function of an
$n$-channel one-dimensional Sehrödinger equation in terms of
$2n$ linearly independent solutions of this equation in the
general case and in terms of n linearly independent and
channel-independent solutions in the case of an Hermitian matrix
of the potentials. If these solutions are known, the construction
of the perturbation theory series reduces to quadratures.
			
            
            
            
          
        
      @article{TMF_1984_58_3_a2,
     author = {A. I. Ignat'ev and V. S. Polikanov},
     title = {Multichannel {Green's} functions and perturbation theory for multichannel problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {338--342},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/}
}
                      
                      
                    TY - JOUR AU - A. I. Ignat'ev AU - V. S. Polikanov TI - Multichannel Green's functions and perturbation theory for multichannel problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 338 EP - 342 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/ LA - ru ID - TMF_1984_58_3_a2 ER -
%0 Journal Article %A A. I. Ignat'ev %A V. S. Polikanov %T Multichannel Green's functions and perturbation theory for multichannel problems %J Teoretičeskaâ i matematičeskaâ fizika %D 1984 %P 338-342 %V 58 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/ %G ru %F TMF_1984_58_3_a2
A. I. Ignat'ev; V. S. Polikanov. Multichannel Green's functions and perturbation theory for multichannel problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 338-342. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a2/
