Ground states of one-dimensional antiferromagnetic models with long-range interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 473-480
Voir la notice de l'article provenant de la source Math-Net.Ru
In the classical lattice antiferromagnetic model on the lattice
$Z^1$ with Hamiltonian
$$
H(\varphi)=\sum\limits_{x,y\in
Z^1;x>y}U(x-y)\varphi(x)\varphi(y)+\mu\sum\limits_{x\in Z^1}\varphi(x),
$$
where $U(x)$ is a strictly convex function $\sum\limits_{x\in
Z^1,x>0}U(x)\infty, \mu$ is the chemical potential, and the
spin variables $\varphi(x)$ take the values $0$ and $1$, periodic
ground states, i.e., periodic configurations with minimal specific
energy, were constructed earlier for rational values of the
density by means of the theory of continued fractions. In the
present paper, it is shown that other periodic ground states do
not exist.
@article{TMF_1984_58_3_a13,
author = {A. A. Kerimov},
title = {Ground states of one-dimensional antiferromagnetic models with long-range interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {473--480},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a13/}
}
TY - JOUR AU - A. A. Kerimov TI - Ground states of one-dimensional antiferromagnetic models with long-range interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 473 EP - 480 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a13/ LA - ru ID - TMF_1984_58_3_a13 ER -
A. A. Kerimov. Ground states of one-dimensional antiferromagnetic models with long-range interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 473-480. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a13/