Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 461-472 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hamiltonian of an electron in a two-dimensional lattice of point potentials in a transverse magnetic field is considered. An expression is found for the Green's function of this Hamiltonian, and from it an equation that determines the dispersion laws $\text{E}_s(\mathbf k)$ is obtained in the case of rational magnetic flux. A detailed investigation of the spectrum is made for the case of integral flux. A criterion is obtained for the conditions under which the Landau levels enter the spectrum of the lattice Hamiltonian.
@article{TMF_1984_58_3_a12,
     author = {V. A. Geiler and V. A. Margulis},
     title = {Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {461--472},
     year = {1984},
     volume = {58},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a12/}
}
TY  - JOUR
AU  - V. A. Geiler
AU  - V. A. Margulis
TI  - Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 461
EP  - 472
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a12/
LA  - ru
ID  - TMF_1984_58_3_a12
ER  - 
%0 Journal Article
%A V. A. Geiler
%A V. A. Margulis
%T Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 461-472
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a12/
%G ru
%F TMF_1984_58_3_a12
V. A. Geiler; V. A. Margulis. Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 461-472. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a12/

[1] Goldberger M. L., Seitz F., Phys. Rev., 71 (1947), 294–310 | DOI | MR | Zbl

[2] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, LGU, L., 1975, 240 pp.

[3] Zak J., Phys. Rev., A134:6 (1964), 1602–1611 | DOI | MR

[4] Zak J., Phys. Rev., A136:3 (1964), 776–780 | DOI | MR

[5] Zak J., Phys. Rev., A136:6 (1964), 1647–1649 | DOI | MR

[6] Hofstadter D. R., Phys. Rev., B14:6 (1976), 2239–2249 | DOI

[7] Dubrovin B. A., Novikov S. P., ZhETF, 79:3 (1980), 1006–1016 | MR

[8] Dubrovin B. A., Novikov S. P., DAN SSSR, 253:6 (1980), 1293–1297 | MR | Zbl

[9] Novikov S. P., DAN SSSR, 257:3 (1981), 538–543 | MR | Zbl

[10] Wannier G. H., J. Math. Phys., 21:2 (1980), 2844–2846 | DOI | MR

[11] Schellnhuber H. J., Obermair G. M., Phys. Rev. Lett., 45:4 (1980), 276–279 | DOI | MR

[12] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971, 544 pp. | Zbl

[13] Berezin F. A., Faddeev L. D., DAN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[14] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl

[15] Dodonov V. V., Malkin I. A., Man'ko V. I., Phys. Lett., 15A (1976), 133–138

[16] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973 ; Т. 2, Наука, М., 1974; Т. 3, Наука, М., 1967 | MR | MR

[17] Lifshits E. M., Pitaevskii L. P., Statisticheskaya fizika, Ch. 2, Nauka, M., 1978, 448 pp. | MR

[18] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 2, Nauka, M., 1968, 624 pp. | MR | Zbl

[19] Aharonov Y., Casher A., Phys. Rev., A19:6 (1979), 2461–2462 | DOI | MR