Influence of correlations of the scattering potential on the localization length in one-dimensional conductors
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 436-444
Cet article a éte moissonné depuis la source Math-Net.Ru
The localization length of electrons in a one-dimensional conductor is studied as a function of the correlation length $\xi$ of the random field and the forward scattering characteristics. It is shown that under the conditions of a finite $\xi$ forward scattering has a delocalizing influence, and it is also shown that the localizing influence of the random field also becomes weaker as the field becomes more correlated. At large $\xi$, the localization length increases in proportion to $\xi$ but can be either greater than or less than $\xi$ depending on whether the forward scattering is strong or weak.
@article{TMF_1984_58_3_a10,
author = {L. V. Chebotarev},
title = {Influence of correlations of the scattering potential on the localization length in one-dimensional conductors},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {436--444},
year = {1984},
volume = {58},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a10/}
}
TY - JOUR AU - L. V. Chebotarev TI - Influence of correlations of the scattering potential on the localization length in one-dimensional conductors JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 436 EP - 444 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a10/ LA - ru ID - TMF_1984_58_3_a10 ER -
%0 Journal Article %A L. V. Chebotarev %T Influence of correlations of the scattering potential on the localization length in one-dimensional conductors %J Teoretičeskaâ i matematičeskaâ fizika %D 1984 %P 436-444 %V 58 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a10/ %G ru %F TMF_1984_58_3_a10
L. V. Chebotarev. Influence of correlations of the scattering potential on the localization length in one-dimensional conductors. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 436-444. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a10/
[1] Lifshits I. M., Gredeskul S. A., Pastur L. A., Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982, 360 pp. | MR
[2] Antsygina T. N., Pastur L. A., Slyusarev V. A., FNT, 7:1 (1981), 5–44
[3] Gorkov L. P., Dorokhov O. N., FNT, 4:3 (1978), 332–342 | MR
[4] Slutskin A. A., Gorelik L. Yu., Tezisy XXII Vsesoyuznogo soveschaniya po fizike nizkikh temperatur, t. 2, FTINT AN USSR, Kishinev, 1982
[5] Sadovskii M. V., ZhETF, 77:5 (1979), 2070–2080 | MR
[6] Abrikosov A. A., Ryzhkin I. A., Adv. Phys., 27:2 (1978), 146–230 | DOI
[7] Mott N., Devis E., Elektronnye protsessy v nekristallicheskikh veschestvakh, t. 1, Mir, M., 1983
[8] Pargamanik L. E., Chebotarev L. V., UFZh, 18:6 (1973), 1044–1045