Clifford algebras as superalgebras and quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 229-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On supermanifolds there are two types of mechanics, to which there correspond superalgebras of functions with Poisson or Butan brackets (respectively, antibrackets). For them, quantizations are constructed in the following senses: 1) representations of the commutation relations, 2) deformation of the Poisson (respectively, Butan) superalgebra into the Lie superalgebra of differential operators, 3) analogs of the spinor representation of a symplectic (orthogonal) Lie algebra. The Clifford algebra is given a new interpretation. Invariant polynomials and Casimir operators on the Poisson superalgebra are described.
@article{TMF_1984_58_2_a7,
     author = {D. A. Leites},
     title = {Clifford algebras as superalgebras and quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--232},
     year = {1984},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a7/}
}
TY  - JOUR
AU  - D. A. Leites
TI  - Clifford algebras as superalgebras and quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 229
EP  - 232
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a7/
LA  - ru
ID  - TMF_1984_58_2_a7
ER  - 
%0 Journal Article
%A D. A. Leites
%T Clifford algebras as superalgebras and quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 229-232
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a7/
%G ru
%F TMF_1984_58_2_a7
D. A. Leites. Clifford algebras as superalgebras and quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 229-232. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a7/

[1] Bernstein J. N., Leites D. A., C. R. de l'Acad. bulgare Sci., 35:3 (1982), 285–286 | MR | Zbl

[2] Leites D. A., UMN, 35:1 (1980), 3–57 | MR | Zbl

[3] Corvin L., Ne'eman Y., Sternberg S., Rev. Mod. Phys., 47 (1975), 573–590 | DOI | MR

[4] Kac V. G., Adv. Math., 26 (1977), 8–96 | DOI | Zbl

[5] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[6] Leites D. A., Funkts. analiz i ego prilozh., 16:1 (1982), 76–77 | MR | Zbl

[7] Shmelev G. S., Matem. sbornik, 120:4 (1983), 528–539 | MR

[8] Shereshevski I. A., Lett. Math. Phys., 5 (1981), 429–433 | DOI | MR

[9] Shmelev G. S., DAN Bolgarii, 36:4 (1983), 250–252 | MR

[10] Vershik A. M., Zap. nauchn. semin. LOMI, 123, 1983, 3–35 | MR | Zbl

[11] Frenkel I. B., J. Funct. Anal., 44 (1981), 259–300 ; Proc. Nat. Acad. Sci. USA, 77 (1980), 6303–6312 | DOI | MR | DOI | MR

[12] Leites D. A., DAN SSSR, 236:4 (1977), 804–808 | MR

[13] Batalin I. A., Vilkovyski G. A., Phys. Lett., 102B (1981), 273–280 | MR

[14] Kirillova R. Yu., Zap. nauchn. semin. LOMI, 123, 1983, 98–111 | MR | Zbl

[15] Leites D. A., Semenov-Tyan-Shanskii M. A., Zap. nauchn. semin. LOMI, 123, 1983, 92–97 | MR | Zbl

[16] Sergeev A. N., DAN Bolgarii, 35:5 (1982), 573–576 | MR | Zbl

[17] Leites D. A., Serganova V. V., Feigin B. L., Teoretiko-gruppovye metody v fizike, t. 1, Nauka, M., 1983, 274–278