Nonlinear realization of the conformal group in two dimensions and the Liouville equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 200-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the Liouville equation $u_{+-}=m^2e^{-2u}$ has an adequate description in the language of the nonlinear realization of the infinite-parameter conformal group $G$ in two dimensions. The coordinates $x^+$, $x^-$ of the two-dimensional Minkowski space and the field $u(x)$ are identified with certain parameters of the factor space $G/H$, where $H=SO(1,1)$ is the Lorentz group in two dimensions. The Liouville equation arises as one of the covariant conditions of reduction of the factor space $G/H$ to its connected geodesic subspace $SL(2,R)/H$. The alternative reduction to the subspace $\mathscr P(1,1)/H$ where $\mathscr P(1,1)$ is the two-dimensional Poincaré group, leads to the free equation for $u(x)$. The corresponding representations of zero curvature and B cklund transformations acquire in the present approach a simple group-theoretical meaning. The possibility of generalizing the proposed construction to other integrable systems is discussed.
@article{TMF_1984_58_2_a4,
     author = {E. A. Ivanov and S. O. Krivonos},
     title = {Nonlinear realization of the conformal group in two dimensions and the {Liouville} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {200--212},
     year = {1984},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a4/}
}
TY  - JOUR
AU  - E. A. Ivanov
AU  - S. O. Krivonos
TI  - Nonlinear realization of the conformal group in two dimensions and the Liouville equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 200
EP  - 212
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a4/
LA  - ru
ID  - TMF_1984_58_2_a4
ER  - 
%0 Journal Article
%A E. A. Ivanov
%A S. O. Krivonos
%T Nonlinear realization of the conformal group in two dimensions and the Liouville equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 200-212
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a4/
%G ru
%F TMF_1984_58_2_a4
E. A. Ivanov; S. O. Krivonos. Nonlinear realization of the conformal group in two dimensions and the Liouville equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 200-212. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a4/

[1] Scott A. C., Chu F. Y. F., McLanghlin D. W., Proc. IEEE, 61 (1973), 1443–1524 ; Захаров В. Е. и др., Теория солитонов: метод обратной задачи рассеяния, Наука, М., 1980 | DOI | MR | MR | Zbl

[2] Ablovitz M. J. et al., Phys. Lett., 31:2 (1973), 125 | DOI

[3] Zakharov V. E., Mikhailov A. V., ZhETF, 14 (1978), 1953–1973 ; D'Auria R., Regge T., Sciuto S., Nucl. Phys., B171:1/2 (1980), 167–188 | MR | DOI | MR

[4] D'Auria R., Sciuto S., Nucl. Phys., B171:1/2 (1980), 189–208 | DOI | MR

[5] Chaichian M., Kulish P. P., Phys. Lett., 78B:4 (1978), 413–417 | DOI | MR

[6] Ivanov E. A., Krivonos S. O., $U(1)$-supersymmetric extension of the Liouville equation, Preprint JINR E2–83–104, JINR, Dubna, 1983 | MR

[7] Kac V. G., Commun. Math. Phys., 53:1 (1977), 31–64 | DOI | MR | Zbl

[8] Ademollo M. et al., Nucl. Phys., B111:1 (1976), 77–110 | DOI

[9] Coleman S., Wess J., Zumino B., p. 1, Phys. Rev., 177:5 (1969), 2239–2247 ; Callan C. L. et al., Phys. Rev., 177 (1969), 2247–2263 ; Волков Д. В., ЭЧАЯ, 4:1 (1973), 3–81 | DOI | DOI | MR

[10] Ivanov E. A., Ogievetskii V. I., TMF, 25:2 (1975), 164–177 | MR

[11] Eisenhart L. P., A treatise on the Differential Geometry of Curver and Surfaces, Dover Publications, N.-Y., 1960 | MR

[12] Wahquist H. D., Estabrook F. B., J. Math. Phys., 16:1 (1975), 1–7 | DOI | MR

[13] Leznov A. N., Savelev M. V., EChAYa, 11:1 (1980), 40–92 ; 12:1 (1981), 125–161 | MR | MR

[14] Zheltukhin A. A., YaF, 33:6, 1723–1728 ; Nesterenko V. V., Preprint JINR E2–82–745, JINR, Dubna, 1982 | MR | MR

[15] Wadati M. et al., Progr. Theor. Phys., 53:2 (1975), 419–436 | DOI | MR | Zbl

[16] Kumei S., J. Math. Phys., 16:12 (1975), 2461–2468 | DOI | MR

[17] Sasaki R., Nucl. Phys., B154:2 (1979), 343–357 ; Bhattacharya C., Bohr H., A method of finding infinite sets of conserved local and nonlocal currents in Liouville and some self dual gauge field theories, Preprint ICTP/81/82–113, Imperial college, London, 1981 | DOI

[18] Konopelchenko B. G., Lett. Math. Phys., 3:1 (1979), 67–92 | DOI | MR

[19] Barbashov B. M. et al., Commun. Math. Phys., 84:4 (1982), 471–483 | DOI | MR

[20] Ivanov E. A., Ogievetskii V. I., Pisma v ZhETF, 23 (1976), 661–664