Hilbert problem with unitary coefficient matrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 184-191
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Hilbert problem with unitary matrix-valued coefficient
function $G(t)$ a solution is obtained in the form of a series
whose general term can be found by quadrature from $G(t)$.
Sufficient conditions are determined for the convergence of this
series, establishing the dependence of the rate of convergence on
the “proximity” of $G(t)$ to the class of matrices of diagonal
form, for which the Hilbert problem admits analytic solution in
quadratures. The obtained solutions are used to construct the Jost
matrix of the coupled $^3S_1+{^3D_1}$ partial channels of $np$
scattering.
@article{TMF_1984_58_2_a2,
author = {V. M. Muzafarov},
title = {Hilbert problem with unitary coefficient matrix},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {184--191},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a2/}
}
V. M. Muzafarov. Hilbert problem with unitary coefficient matrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 184-191. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a2/