Two-dimensional ice-type vertex model with two types of staggered sites \newline
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 315-320

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact solution is obtained in the thermodynamic limit for the free energy of a system of two interacting modified KDP models of a ferroelectric. Addition of an interaction between the models does not change the nature of the phase transition, but leads to a shift of the transition temperature by an amount proportional to the interaction. It is shown that there exists a prefluctuation region in which the interaction qualitatively changes the temperature dependence of the specific heat. The obtained exact results confirm the predictions of the phenomenological theory on the influence of perturbations on phase transitions.
@article{TMF_1984_58_2_a16,
     author = {R. Z. Bariev},
     title = {Two-dimensional ice-type vertex model with two types of staggered sites \newline},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--320},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a16/}
}
TY  - JOUR
AU  - R. Z. Bariev
TI  - Two-dimensional ice-type vertex model with two types of staggered sites \newline
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 315
EP  - 320
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a16/
LA  - ru
ID  - TMF_1984_58_2_a16
ER  - 
%0 Journal Article
%A R. Z. Bariev
%T Two-dimensional ice-type vertex model with two types of staggered sites \newline
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 315-320
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a16/
%G ru
%F TMF_1984_58_2_a16
R. Z. Bariev. Two-dimensional ice-type vertex model with two types of staggered sites \newline. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 315-320. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a16/