Equivalence of two forms of the nonequilibrium statistical operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 299-307

Voir la notice de l'article provenant de la source Math-Net.Ru

The equivalence of two variants of the nonequilibrium statistical operator method is proved: NSO-1 (canonical distribution of quasi-integrals of the motion) and NSO-2 (invariant part of the quasi-equilibrium distribution). It is shown that in the general case every solution of the NSO-2 balance equations is a solution of the NSO-1 balance equations. The proof is based on convexity inequalities and does not contain any assumptions of physical nature going beyond the original formulation of the nonequilibrium statistical operator method.
@article{TMF_1984_58_2_a14,
     author = {M. I. Auslender and V. P. Kalashnikov},
     title = {Equivalence of two forms of the nonequilibrium statistical operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {299--307},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/}
}
TY  - JOUR
AU  - M. I. Auslender
AU  - V. P. Kalashnikov
TI  - Equivalence of two forms of the nonequilibrium statistical operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 299
EP  - 307
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/
LA  - ru
ID  - TMF_1984_58_2_a14
ER  - 
%0 Journal Article
%A M. I. Auslender
%A V. P. Kalashnikov
%T Equivalence of two forms of the nonequilibrium statistical operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 299-307
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/
%G ru
%F TMF_1984_58_2_a14
M. I. Auslender; V. P. Kalashnikov. Equivalence of two forms of the nonequilibrium statistical operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 299-307. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/