Equivalence of two forms of the nonequilibrium statistical operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 299-307
Voir la notice de l'article provenant de la source Math-Net.Ru
The equivalence of two variants of the nonequilibrium statistical
operator method is proved: NSO-1 (canonical distribution of
quasi-integrals of the motion) and NSO-2 (invariant part of the
quasi-equilibrium distribution). It is shown that in the general
case every solution of the NSO-2 balance equations is a solution
of the NSO-1 balance equations. The proof is based on convexity
inequalities and does not contain any assumptions of physical
nature going beyond the original formulation of the nonequilibrium
statistical operator method.
@article{TMF_1984_58_2_a14,
author = {M. I. Auslender and V. P. Kalashnikov},
title = {Equivalence of two forms of the nonequilibrium statistical operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {299--307},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/}
}
TY - JOUR AU - M. I. Auslender AU - V. P. Kalashnikov TI - Equivalence of two forms of the nonequilibrium statistical operator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 299 EP - 307 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/ LA - ru ID - TMF_1984_58_2_a14 ER -
M. I. Auslender; V. P. Kalashnikov. Equivalence of two forms of the nonequilibrium statistical operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 299-307. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/