Equivalence of two forms of the nonequilibrium statistical operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 299-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equivalence of two variants of the nonequilibrium statistical operator method is proved: NSO-1 (canonical distribution of quasi-integrals of the motion) and NSO-2 (invariant part of the quasi-equilibrium distribution). It is shown that in the general case every solution of the NSO-2 balance equations is a solution of the NSO-1 balance equations. The proof is based on convexity inequalities and does not contain any assumptions of physical nature going beyond the original formulation of the nonequilibrium statistical operator method.
@article{TMF_1984_58_2_a14,
     author = {M. I. Auslender and V. P. Kalashnikov},
     title = {Equivalence of two forms of the nonequilibrium statistical operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {299--307},
     year = {1984},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/}
}
TY  - JOUR
AU  - M. I. Auslender
AU  - V. P. Kalashnikov
TI  - Equivalence of two forms of the nonequilibrium statistical operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 299
EP  - 307
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/
LA  - ru
ID  - TMF_1984_58_2_a14
ER  - 
%0 Journal Article
%A M. I. Auslender
%A V. P. Kalashnikov
%T Equivalence of two forms of the nonequilibrium statistical operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 299-307
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/
%G ru
%F TMF_1984_58_2_a14
M. I. Auslender; V. P. Kalashnikov. Equivalence of two forms of the nonequilibrium statistical operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 299-307. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a14/

[1] Zubarev D. N., DAN SSSR, 140:1 (1961), 92–95 ; 164:3 (1965), 537–540 ; Неравновесная статистическая термодинамика, Наука, М., 1971, 415 с. | MR | Zbl

[2] McLennan J. A., Phys. Fluids, 4 (1961), 1319–1324 ; Adv. Chem. Phys., 5 (1963), 261–317 | DOI | MR | Zbl | DOI

[3] Zubarev D. N., Kalashnikov V. P., TMF, 3:1 (1970), 126–134 | MR

[4] Zubarev D. N., TMF, 3:2 (1970), 276–286 ; “Современные методы теории неравновесных процессов”, Современные проблемы математики, Итоги науки и техники, 15, ВИНИТИ, М., 1980, 131–226 | MR | MR

[5] Zubarev D. N., Kalashnikov V. P., TMF, 7:3 (1971), 372–394 | Zbl

[6] Tischenko S. V., TMF, 25:3 (1975), 407–409 | MR | Zbl

[7] Auslender M. I., TMF, 21:3 (1974), 354–366 | MR | Zbl

[8] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971, 367 pp.

[9] Isikhara A., Statisticheskaya fizika, Mir, M., 1973, 473 pp. | MR

[10] Bendat J., Sherman S., Trans. Amer. Math. Soc., 79 (1955), 58–71 | DOI | MR | Zbl