@article{TMF_1984_58_2_a12,
author = {E. D. Belokolos and I. M. Pershko},
title = {Classification of quasione-dimensional {Peierls{\textendash}Frehlich} conductors},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {279--291},
year = {1984},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a12/}
}
E. D. Belokolos; I. M. Pershko. Classification of quasione-dimensional Peierls–Frehlich conductors. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 279-291. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a12/
[1] Paierls R., Kvantovaya teoriya tverdykh tel, IL, M., 1956, 260 pp.
[2] Belokolos E. D., TMF, 45:2 (1980), 268–275 | MR
[3] Brazovskii S. A., Dzyaloshinskii I. E., Krichever I. M., ZhETF, 83:1 (1982), 389–415 | MR
[4] Shastry S. B., Phys. Rev. Lett., 50:9 (1983), 633–636 | DOI | MR
[5] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, ed. S. P. Novikov, Nauka, M., 1980, 320 pp. | MR
[6] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974, 300 pp. | MR
[7] Pershko I. M., Chislo sostoyanii kvantovoi chastitsy v potentsialakh Lame, Preprint ITF-82–28R, ITF AN USSR, Kiev, 1982
[8] Nelder J. A., Mead R., The Computer Journal, 7:4 (1965), 308–313 | DOI | MR | Zbl
[9] Belokolos E. D., Pershko I. M., On a classification of one-dimensional conductors, Preprint ITP-82–156E, ITP, Kiev, 1982
[10] Miane J. A., Carmona F., Delhaes P., Phys. Stat. Sol. (b), 111:1 (1982), 235–246 | DOI
[11] Mc Dougall J., Stoner E. C., Phil. Trans. Roy. Soc. (London), A237 (1938), 67–104 | DOI
[12] Bogolyubov N. N. (ml.), Brankov I. G., Zagrebnov V. A., Kurbatov A. M., Tonchev N. S., Metod approksimiruyuschego gamiltoniana v statisticheskoi fizike, Izd. Bolgarskoi Akademii Nauk, Sofiya, 1981, 245 pp.
[13] Belokolos E. D., TMF, 48:1 (1981), 60–69 | MR