Classification of quasione-dimensional Peierls–Frehlich conductors
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 279-291 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The limits of the spectrum of a single-gap potential that extremalizes the Peierls-Frbhlieh thermodynamic functional are calculated as functions of the temperature. Analysis of the obtained results leads to a classification of quasione-dimensional conductors as a function of the dimensionless number $\varkappa=(\hbar^2\mu/2m)^{1/2}\hbar\omega/\lambda^2$, where $\mu$ is the chemical potential, $\omega$ is the frequency of acoustic phonons, and $\lambda$ is the electron-phonon coupling constant. If $\varkappa>\varkappa_c$ a quasione-dimensional conductor is a conductor with charge density waves; if $\varkappa<\varkappa_c$, a conductor of soliton (condenson) type. In accordance with analytic calculations, $\varkappa_c=0,1326$. For energies and temperatures corresponding to a singularity in the spectrum (forbidden band or discrete level) analytic expressions in good agreement with numerical calculations are obtained.
@article{TMF_1984_58_2_a12,
     author = {E. D. Belokolos and I. M. Pershko},
     title = {Classification of quasione-dimensional {Peierls{\textendash}Frehlich} conductors},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {279--291},
     year = {1984},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a12/}
}
TY  - JOUR
AU  - E. D. Belokolos
AU  - I. M. Pershko
TI  - Classification of quasione-dimensional Peierls–Frehlich conductors
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 279
EP  - 291
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a12/
LA  - ru
ID  - TMF_1984_58_2_a12
ER  - 
%0 Journal Article
%A E. D. Belokolos
%A I. M. Pershko
%T Classification of quasione-dimensional Peierls–Frehlich conductors
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 279-291
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a12/
%G ru
%F TMF_1984_58_2_a12
E. D. Belokolos; I. M. Pershko. Classification of quasione-dimensional Peierls–Frehlich conductors. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 279-291. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a12/

[1] Paierls R., Kvantovaya teoriya tverdykh tel, IL, M., 1956, 260 pp.

[2] Belokolos E. D., TMF, 45:2 (1980), 268–275 | MR

[3] Brazovskii S. A., Dzyaloshinskii I. E., Krichever I. M., ZhETF, 83:1 (1982), 389–415 | MR

[4] Shastry S. B., Phys. Rev. Lett., 50:9 (1983), 633–636 | DOI | MR

[5] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, ed. S. P. Novikov, Nauka, M., 1980, 320 pp. | MR

[6] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974, 300 pp. | MR

[7] Pershko I. M., Chislo sostoyanii kvantovoi chastitsy v potentsialakh Lame, Preprint ITF-82–28R, ITF AN USSR, Kiev, 1982

[8] Nelder J. A., Mead R., The Computer Journal, 7:4 (1965), 308–313 | DOI | MR | Zbl

[9] Belokolos E. D., Pershko I. M., On a classification of one-dimensional conductors, Preprint ITP-82–156E, ITP, Kiev, 1982

[10] Miane J. A., Carmona F., Delhaes P., Phys. Stat. Sol. (b), 111:1 (1982), 235–246 | DOI

[11] Mc Dougall J., Stoner E. C., Phil. Trans. Roy. Soc. (London), A237 (1938), 67–104 | DOI

[12] Bogolyubov N. N. (ml.), Brankov I. G., Zagrebnov V. A., Kurbatov A. M., Tonchev N. S., Metod approksimiruyuschego gamiltoniana v statisticheskoi fizike, Izd. Bolgarskoi Akademii Nauk, Sofiya, 1981, 245 pp.

[13] Belokolos E. D., TMF, 48:1 (1981), 60–69 | MR