Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 261-278
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that at low temperatures and for arbitrary external
fields (activities $z_k$, $\hat z=\{z_k\}$) the ensemble with the
Hamiltonian (1) and particles in the set $\Phi$ is equivalent to
$|\Phi|$ Ising models with activities $b_k(\hat z), \hat b(\hat z)
= \{b_k(\hat z)\}$. The mapping $\hat b(\hat z)$ is a
homeomorphism on the positive octant $l_\infty (\Phi)$ if
$\sup\limits_k \sum\limits_{l \neq k}
\exp\{-\beta\varepsilon(k,l)\}\leq \bar\psi_1$, where $\bar\psi_1$
is a small number. The pressure in the ensemble is $p(\hat
z)=\sup\limits_{k \in \Phi}b_k(\hat z) = | \hat b(\hat z) |$. The
limit Gibbs states corresponding to the vector $\hat z$ are small
perturbations of the ground states $\alpha(x)= q \in G_1(\hat z)$
and are labeled by elements of the set $G_1(\hat z) = \{ \hat q:
\ln b_q(\hat z) = p(\hat z)\}$, where the function $G_1(\hat z)$
defines the phase diagram of the ensemble. In the regions of
constancy of $G_1(\hat z)$ the pressure can be continued to a
holomorphie function, and the particle densities $z_l \partial
p/\partial z_l$ are continuous in the closure of a region of
constancy of $G_1(\hat z)$.
			
            
            
            
          
        
      @article{TMF_1984_58_2_a11,
     author = {A. G. Basuev},
     title = {Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {261--278},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/}
}
                      
                      
                    TY - JOUR AU - A. G. Basuev TI - Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 261 EP - 278 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/ LA - ru ID - TMF_1984_58_2_a11 ER -
%0 Journal Article %A A. G. Basuev %T Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states %J Teoretičeskaâ i matematičeskaâ fizika %D 1984 %P 261-278 %V 58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/ %G ru %F TMF_1984_58_2_a11
A. G. Basuev. Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 261-278. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/
