Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 261-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that at low temperatures and for arbitrary external fields (activities $z_k$, $\hat z=\{z_k\}$) the ensemble with the Hamiltonian (1) and particles in the set $\Phi$ is equivalent to $|\Phi|$ Ising models with activities $b_k(\hat z), \hat b(\hat z) = \{b_k(\hat z)\}$. The mapping $\hat b(\hat z)$ is a homeomorphism on the positive octant $l_\infty (\Phi)$ if $\sup\limits_k \sum\limits_{l \neq k} \exp\{-\beta\varepsilon(k,l)\}\leq \bar\psi_1$, where $\bar\psi_1$ is a small number. The pressure in the ensemble is $p(\hat z)=\sup\limits_{k \in \Phi}b_k(\hat z) = | \hat b(\hat z) |$. The limit Gibbs states corresponding to the vector $\hat z$ are small perturbations of the ground states $\alpha(x)= q \in G_1(\hat z)$ and are labeled by elements of the set $G_1(\hat z) = \{ \hat q: \ln b_q(\hat z) = p(\hat z)\}$, where the function $G_1(\hat z)$ defines the phase diagram of the ensemble. In the regions of constancy of $G_1(\hat z)$ the pressure can be continued to a holomorphie function, and the particle densities $z_l \partial p/\partial z_l$ are continuous in the closure of a region of constancy of $G_1(\hat z)$.
@article{TMF_1984_58_2_a11,
     author = {A. G. Basuev},
     title = {Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {261--278},
     year = {1984},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/}
}
TY  - JOUR
AU  - A. G. Basuev
TI  - Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 261
EP  - 278
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/
LA  - ru
ID  - TMF_1984_58_2_a11
ER  - 
%0 Journal Article
%A A. G. Basuev
%T Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 261-278
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/
%G ru
%F TMF_1984_58_2_a11
A. G. Basuev. Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 261-278. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/

[1] Pirogov S. A., Sinai Ya. G., TMF, 25:3 (1975), 358–369 ; 26:1 (1976), 61–76 | MR | MR

[2] Basuev A. G., TMF, 58:1 (1984), 121–136 | MR

[3] Gertsik V. M., Izv. AN SSSR, ser. matem., 40:2 (1976), 448–462 | MR | Zbl

[4] Sinai Ya. G., Teoriya fazovykh perekhodov, Nauka, M., 1980, 208 pp. | MR

[5] Basuev A. G., TMF, 57:3 (1983), 338–353 | MR

[6] Ryuell D., Statisticheskaya mekhanika, Mir, M., 1971, 367 pp.