Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 261-278
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that at low temperatures and for arbitrary external fields (activities $z_k$, $\hat z=\{z_k\}$) the ensemble with the Hamiltonian (1) and particles in the set $\Phi$ is equivalent to $|\Phi|$ Ising models with activities $b_k(\hat z), \hat b(\hat z) = \{b_k(\hat z)\}$. The mapping $\hat b(\hat z)$ is a homeomorphism on the positive octant $l_\infty (\Phi)$ if $\sup\limits_k \sum\limits_{l \neq k} \exp\{-\beta\varepsilon(k,l)\}\leq \bar\psi_1$, where $\bar\psi_1$ is a small number. The pressure in the ensemble is $p(\hat z)=\sup\limits_{k \in \Phi}b_k(\hat z) = | \hat b(\hat z) |$. The limit Gibbs states corresponding to the vector $\hat z$ are small perturbations of the ground states $\alpha(x)= q \in G_1(\hat z)$ and are labeled by elements of the set $G_1(\hat z) = \{ \hat q: \ln b_q(\hat z) = p(\hat z)\}$, where the function $G_1(\hat z)$ defines the phase diagram of the ensemble. In the regions of constancy of $G_1(\hat z)$ the pressure can be continued to a holomorphie function, and the particle densities $z_l \partial p/\partial z_l$ are continuous in the closure of a region of constancy of $G_1(\hat z)$.
@article{TMF_1984_58_2_a11,
author = {A. G. Basuev},
title = {Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {261--278},
year = {1984},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/}
}
TY - JOUR AU - A. G. Basuev TI - Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 261 EP - 278 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/ LA - ru ID - TMF_1984_58_2_a11 ER -
%0 Journal Article %A A. G. Basuev %T Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states %J Teoretičeskaâ i matematičeskaâ fizika %D 1984 %P 261-278 %V 58 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/ %G ru %F TMF_1984_58_2_a11
A. G. Basuev. Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 261-278. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a11/
[1] Pirogov S. A., Sinai Ya. G., TMF, 25:3 (1975), 358–369 ; 26:1 (1976), 61–76 | MR | MR
[2] Basuev A. G., TMF, 58:1 (1984), 121–136 | MR
[3] Gertsik V. M., Izv. AN SSSR, ser. matem., 40:2 (1976), 448–462 | MR | Zbl
[4] Sinai Ya. G., Teoriya fazovykh perekhodov, Nauka, M., 1980, 208 pp. | MR
[5] Basuev A. G., TMF, 57:3 (1983), 338–353 | MR
[6] Ryuell D., Statisticheskaya mekhanika, Mir, M., 1971, 367 pp.