Oscillating universe in the case $p\neq0$
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 163-168
Cet article a éte moissonné depuis la source Math-Net.Ru
Markov [1,2] has considered a perpetually oscillating universe under a special assumption concerning the parameters of the model: $n=m=1$, $\Lambda'=2\rho_{\rm PI}$. He considered the case of dust, $T_{\mu\nu}=\rho c^2{\delta_\mu}^0 {\delta_\nu}^0$ with pressure $p=0$. The present paper investigates the variant with $p\ne0$, and there is also a discussion of a model in which the requirement $T_{\mu;\nu}^\nu =0$ is satisfied.
@article{TMF_1984_58_2_a0,
author = {\`E. G. Aman and M. A. Markov},
title = {Oscillating universe in the case $p\neq0$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--168},
year = {1984},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a0/}
}
È. G. Aman; M. A. Markov. Oscillating universe in the case $p\neq0$. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 163-168. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a0/
[1] Markov M. A., Pisma ZhETF, 36 (1982), 214
[2] Markov M. A., Problems of Perpetually Oscillating Universe, Preprint P-0286, Inst. for Nucl. Res. Acad. of Sciences of the USSR, Moskow, 1983 | MR
[3] Petrov B. N., Goldenblat I. I., Ulanov G. M., Ulyanov S. V., Problemy upravleniya relyativistskimi i kvantovymi dinamicheskimi sistemami, Nauka, M., 1982
[4] Zeldovich Ya. B., Novikov I. D., Stroenie i evolyutsiya Vselennoi, Nauka, M., 1975
[5] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973 | MR
[6] Starobinskii A. A., Pisma v ZhETF, 30 (1979), 719 ; Phys. Lett., 91B (1980), 99