Mayer expansions for gas of contours at low temperatures and in arbitrary external fields for the multicomponent ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 121-136
Cet article a éte moissonné depuis la source Math-Net.Ru
Convergence of contour expansions is proved for $\operatorname{Re}\beta\ge\beta_1$ and arbitrary external fields. It is also shown that the cluster functions are holomorphic with respect to the external fields in regions in which the fields have constant sign. The results are based on the construction of uniform estimates for the considered expansions in the neighborhood of the physical region of variation of the external fields.
@article{TMF_1984_58_1_a9,
author = {A. G. Basuev},
title = {Mayer expansions for gas of contours at low temperatures and in arbitrary external fields for the multicomponent ising model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {121--136},
year = {1984},
volume = {58},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a9/}
}
TY - JOUR AU - A. G. Basuev TI - Mayer expansions for gas of contours at low temperatures and in arbitrary external fields for the multicomponent ising model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 121 EP - 136 VL - 58 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a9/ LA - ru ID - TMF_1984_58_1_a9 ER -
%0 Journal Article %A A. G. Basuev %T Mayer expansions for gas of contours at low temperatures and in arbitrary external fields for the multicomponent ising model %J Teoretičeskaâ i matematičeskaâ fizika %D 1984 %P 121-136 %V 58 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a9/ %G ru %F TMF_1984_58_1_a9
A. G. Basuev. Mayer expansions for gas of contours at low temperatures and in arbitrary external fields for the multicomponent ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 121-136. http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a9/
[1] Ryuell D., Statisticheskaya mekhanika, Mir, M., 1971, 367 pp.
[2] Pirogov S. A., Sinai Ya. G., TMF, 25:3 (1975), 358–369 ; 26:1 (1976), 61–76 | MR | MR
[3] Sinai Ya. G., Teoriya fazovykh perekhodov, Nauka, M., 1980, 208 pp. | MR
[4] Virchenko Yu. P., TMF, 52:3 (1982), 473–490 | MR
[5] Basuev A. G., TMF, 57:3 (1983), 338–353 | MR
[6] Peierls R., Proc. Cambridge Phil. Soc., 32:3 (1936), 477–481 | DOI | Zbl