Hierarchical vector model of a ferromagnet in the method of collective variables. The Lee–Yang theorem
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 96-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A hierarchical vector model of a ferromagnet that approximates the corresponding translationally symmetric model with two-body interaction of arbitrary range is proposed. For such a model of arbitrary vector dimension it is shown that the zeros of the partition function are localized on the imaginary axis of magnetic field values. A sufficient condition is also proved for block-spin distributions whose partition functions have such a property.
@article{TMF_1984_58_1_a7,
     author = {Yu. V. Kozitskii},
     title = {Hierarchical vector model of a ferromagnet in the method of collective variables. {The} {Lee{\textendash}Yang} theorem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {96--108},
     year = {1984},
     volume = {58},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a7/}
}
TY  - JOUR
AU  - Yu. V. Kozitskii
TI  - Hierarchical vector model of a ferromagnet in the method of collective variables. The Lee–Yang theorem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 96
EP  - 108
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a7/
LA  - ru
ID  - TMF_1984_58_1_a7
ER  - 
%0 Journal Article
%A Yu. V. Kozitskii
%T Hierarchical vector model of a ferromagnet in the method of collective variables. The Lee–Yang theorem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 96-108
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a7/
%G ru
%F TMF_1984_58_1_a7
Yu. V. Kozitskii. Hierarchical vector model of a ferromagnet in the method of collective variables. The Lee–Yang theorem. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 96-108. http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a7/

[1] Yukhnovskii I. R., Rudavskii Yu. K., UFZh, 22:1 (1977), 50–59 | MR

[2] Yukhnovsky I. R., On general theory of second order phase transition, Preprint ITP-83–6E, ITP, Kiev, 1983 | MR

[3] Yukhnovskii I. R., TMF, 36:3 (1978), 373–399

[4] Yukhnovsky I. R., Vakarchuk I. A., Rudavsky Yu. K., $n$-component model. Functional representation and differential form of equations of renormalization group, Preprint ITP-79–20E, ITP, Kiev, 1979

[5] Kozitskii Yu. V., Yukhnovskii I. R., TMF, 51:2 (1982), 268–277 | MR

[6] Dyson F. J., Commun. Math. Phys., 12 (1969), 91–107 | DOI | MR | Zbl

[7] Sinai Ya. G., Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980, 207 pp. | MR

[8] Dobrushin R. L., Mnogokomponentnye sluchainye sistemy, eds. Dobrushin R. L., Sinai Ya. G., Nauka, M., 1978, 179–213 | MR

[9] Lieb E. H., Sokal A. D., A general Lee - Yang theorem for one-component and multicomponent ferromagnets, Princeton preprint, Princeton, 1980 | MR

[10] Dunlop F., Newman C. M., Commun. Math. Phys., 44 (1975), 223–235 | DOI | MR

[11] Iliev L., Nuli na tseli funktsii, Izdatelstvo na B'lgarskata akademiya na naukite, Sofiya, 1979, 132 pp.

[12] Jensen J. L. W. V., Acta Mathematica, 36 (1912–1913), 181–195 | DOI | MR | Zbl

[13] Lieb E. H., Sokal A. D., Zeros of derivatives of polynomials in several complex variables, Princeton preprint, Princeton, 1980 | MR

[14] Saimon B., Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976, 357 pp.

[15] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956, 623 pp.