Connection between the approximating Hamiltonian method and theta-function integration
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 61-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Fröhlich Hamiltonian describing the coupling of electrons to a countable set of phonon modes it is shown that the self-consistency equations which arise in the approximating Hamiltonian method can be solved by theta-function integration.
@article{TMF_1984_58_1_a4,
     author = {E. D. Belokolos and D. Ya. Petrina},
     title = {Connection between the approximating {Hamiltonian} method and theta-function integration},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {61--71},
     year = {1984},
     volume = {58},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a4/}
}
TY  - JOUR
AU  - E. D. Belokolos
AU  - D. Ya. Petrina
TI  - Connection between the approximating Hamiltonian method and theta-function integration
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 61
EP  - 71
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a4/
LA  - ru
ID  - TMF_1984_58_1_a4
ER  - 
%0 Journal Article
%A E. D. Belokolos
%A D. Ya. Petrina
%T Connection between the approximating Hamiltonian method and theta-function integration
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 61-71
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a4/
%G ru
%F TMF_1984_58_1_a4
E. D. Belokolos; D. Ya. Petrina. Connection between the approximating Hamiltonian method and theta-function integration. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 61-71. http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a4/

[1] Bogolyubov N. N., K voprosu o modelnom gamiltoniane v teorii sverkhprovodimosti, Preprint R-511, OIYaI, Dubna, 1960 ; Избранные труды, т. 3, Наукова думка, К., 1971, 110–173 | MR | MR

[2] Bogolyubov N. N. (ml.), Metod issledovaniya modelnykh gamiltonianov, Nauka, M., 1974 ; Боголюбов Н. Н. (мл.), Бранков Й. Г., Загребнов В. А., Курбатов А. М., Тончев Н. С., Метод аппроксимирующего гамильтониана в статистической физике, Изд. Болгарской Академии Наук, София, 1981, 245 с. | MR

[3] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980, 320 pp. | MR

[4] Belokolos E. D., TMF, 45:2 (1980), 268–275 | MR

[5] Novikov S. P., Funkts. analiz i ego prilozh., 8:3 (1974), 54–66 | MR | Zbl

[6] Bogolyubov N. N. (ml.), Petrina D. Ya., TMF, 33:2 (1977), 231–245 ; 37:2 (1978), 246–257 | MR | MR

[7] Dubrovin B. A., Funkts. analiz i ego prilozh., 9:3 (1975), 41–51 | MR | Zbl

[8] Lax P. D., Appl. Math., 28:1 (1975), 141–188 | MR | Zbl

[9] Hochstadt H., Arch. Rational Mech. and Anal., 19:5 (1965), 535–562 | DOI | MR