Application of inverse scattering method to singular solutions of nonlinear equations. III
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 38-49
Voir la notice de l'article provenant de la source Math-Net.Ru
An existence and uniqueness theorem is proved for the solution of
the Cauchy problem for the nonlinear Schrödinger equation with
repulsion in the class of functions with singularities of the type
$x^{-1}$. The behavior of the singularity lines of the solution in
the $(x,t)$ plane is described.
@article{TMF_1984_58_1_a2,
author = {V. A. Arkad'ev},
title = {Application of inverse scattering method to singular solutions of nonlinear equations. {III}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {38--49},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a2/}
}
TY - JOUR AU - V. A. Arkad'ev TI - Application of inverse scattering method to singular solutions of nonlinear equations. III JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 38 EP - 49 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a2/ LA - ru ID - TMF_1984_58_1_a2 ER -
V. A. Arkad'ev. Application of inverse scattering method to singular solutions of nonlinear equations. III. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 38-49. http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a2/