On measurements of the parameters of a quantum random process
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 424-437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quantum analog of the Ornstein–Uhlenbeck process is considered. It describes a quantum oscillator with damping in thermodynamic equilibrium with a reservoir and subject to an external disturbance. The problem of estimating the unknown amplitude of the disturbance using the results of continuous (in time) quantum measurements on the process with allowance for reduction of the state is solved. Two procedures are considered: Continuous measurement of the complex amplitude and continuous measurement of the coordinate of the oscillator in the Hiesenberg representation. Exact and asymptotic expressions are found for the dispersions of the corresponding estimates, and from them a criterion follows for comparing the two procedures. These expressions are compared with the “reductionless” bound which is derived from the quantum theory of detection and estimation.
@article{TMF_1983_57_3_a9,
     author = {A. S. Holevo},
     title = {On measurements of the parameters of a~quantum random process},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {424--437},
     year = {1983},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a9/}
}
TY  - JOUR
AU  - A. S. Holevo
TI  - On measurements of the parameters of a quantum random process
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 424
EP  - 437
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a9/
LA  - ru
ID  - TMF_1983_57_3_a9
ER  - 
%0 Journal Article
%A A. S. Holevo
%T On measurements of the parameters of a quantum random process
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 424-437
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a9/
%G ru
%F TMF_1983_57_3_a9
A. S. Holevo. On measurements of the parameters of a quantum random process. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 424-437. http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a9/

[1] Lax M., Phys. Rev., 145:1 (1966), 110–129 | DOI

[2] Lewis J. T., Phys. Rep., 77:3 (1981), 339–349 | DOI | MR

[3] Accardi L., Frigerio A., Lewis J. T., Publ. Res. Inst. Math. Sci., Kyoto Univ., 18:1 (1982), 97–133 | DOI | MR | Zbl

[4] Khelstrom K., Kvantovaya teoriya proverki gipotez i otsenivaniya, Mir, M., 1979

[5] Baras J. S., Harger R. O., IEEE Trans., IT-23:6 (1977), 683–693 | MR | Zbl

[6] Braginskii V. B., Vorontsov Yu. I., UFN, 114:1 (1974), 41–53 | DOI

[7] Menskii M. B., ZhETF, 77:4(10) (1979), 1326–1339

[8] Thorne K. S. et al., Phys. Rev. Lett., 40 (1979), 667–671 | DOI

[9] Basawa I. V., Prakasa Rao B. L. S., Statistical inference for stochastic processes. Theory and methods, Acad. Press, London, 1982 | MR

[10] Kholevo A. S., Teor. veroyatn. i ee primen., 14:1 (1969), 78–101 | Zbl

[11] Kholevo A. S., Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, Nauka, M., 1980 | MR | Zbl

[12] Friedman C. N., Indiana Univ. Math. J., 21:11 (1972), 1001–1011 | DOI | MR

[13] Misra B., Sudarshan E. C. G., J. Math. Phys., 18:4 (1977), 756–763 | DOI | MR

[14] Barchielli A., Lanz L., Prosperi G. M., A model for macroscopic description and continuous observations in quantum mechanics, Preprint IFUM 271/FT, IFUM, Milano, 1982 | MR

[15] Barchielli A., Continual measurements for quantum open systems, Preprint IFUM 280/FT, IFUM, Milano, 1982 | MR

[16] Ford C. W., Kac M., Mazur P., J. Math. Phys., 6 (1965), 504–515 | DOI | MR | Zbl

[17] Maassen H., On a class of quantum Langevin equations and the question of approach to equilibrium. Thesis, Groningen University, Groningen, 1982

[18] Frigerio A., Lewis J. T., Non-commutative Gaussian processes, Preprint DIAS-STP-80-02, DIAS, Dublin, 1980

[19] Davies E. B., Quantum theory of open systems, Academic Press, London, 1976 | MR