Symmetries of scalar fields.~II
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 382-391
Voir la notice de l'article provenant de la source Math-Net.Ru
Local symmetries and conserved densities are calculated for a system of classical
scalar fields in $(n+1)$-dimensional ($n>1$) space-time with Lagrangian of the form
$$
L=\frac12h_{ab}(\varphi){\varphi_\nu}^a\varphi^{b\nu}-V(\varphi).
$$
It is shown that, in contrast to two-dimensional theories, the existence of higher
symmetries or conservation laws is possible only if in the field equations one can
separate a linear subsystem by means of a point transformation $\varphi^a=f^a(\bar\varphi)$. In the case of an irreducible metric $h_{ab}$, all symmetries and conserved densities are found
explicitly. An equation is obtained for the local conserved densities of an arbitrary
generalized-evolution system.
@article{TMF_1983_57_3_a5,
author = {A. G. Meshkov},
title = {Symmetries of scalar {fields.~II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {382--391},
publisher = {mathdoc},
volume = {57},
number = {3},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a5/}
}
A. G. Meshkov. Symmetries of scalar fields.~II. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 382-391. http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a5/