Symmetries of scalar fields. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 382-391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Local symmetries and conserved densities are calculated for a system of classical scalar fields in $(n+1)$-dimensional ($n>1$) space-time with Lagrangian of the form $$ L=\frac12h_{ab}(\varphi){\varphi_\nu}^a\varphi^{b\nu}-V(\varphi). $$ It is shown that, in contrast to two-dimensional theories, the existence of higher symmetries or conservation laws is possible only if in the field equations one can separate a linear subsystem by means of a point transformation $\varphi^a=f^a(\bar\varphi)$. In the case of an irreducible metric $h_{ab}$, all symmetries and conserved densities are found explicitly. An equation is obtained for the local conserved densities of an arbitrary generalized-evolution system.
@article{TMF_1983_57_3_a5,
     author = {A. G. Meshkov},
     title = {Symmetries of scalar {fields.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {382--391},
     year = {1983},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a5/}
}
TY  - JOUR
AU  - A. G. Meshkov
TI  - Symmetries of scalar fields. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 382
EP  - 391
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a5/
LA  - ru
ID  - TMF_1983_57_3_a5
ER  - 
%0 Journal Article
%A A. G. Meshkov
%T Symmetries of scalar fields. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 382-391
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a5/
%G ru
%F TMF_1983_57_3_a5
A. G. Meshkov. Symmetries of scalar fields. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 382-391. http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a5/

[1] Meshkov A. G., TMF, 55:2 (1983), 197–204 | MR | Zbl

[2] Volkov M. K., Pervushin V. N., Suschestvenno nelineinye kvantovye teorii, dinamicheskie simmetrii i fizika mezonov, Atomizdat, M., 1978

[3] Manakov S. V., Zakharov V. E., Lett. Math. Phys., 5:3 (1981), 247–253 | DOI | MR

[4] Ibragimov N. Kh., DAN SSSR, 230:1 (1976), 26–29 | MR | Zbl

[5] Fujmoto A., Watanabe Y., Math. Jap., 26:2 (1981), 203–221 | MR

[6] Jonson H. H., Proc. Am. Math. Soc., 15 (1964), 432–437 ; 675–678 | DOI | MR

[7] Shapovalov V. N., Izv. VUZov SSSR, fizika, 1977, no. 6, 57–70

[8] Kaptsov O. V., DAN SSSR, 262:5 (1982), 1056–1059 | MR | Zbl

[9] Zhiber A. V., Shabat A. B., DAN SSSR, 247:5 (1979), 1103–1107 | MR

[10] Zhiber A. V., Ibragimov N. Kh., Shabat A. B., DAN SSSR, 249:1 (1979), 26–29 | MR | Zbl

[11] Leznov A. N., Smirnov V. G., Shabat A. B., TMF, 51:1 (1982), 10–21 | MR | Zbl

[12] Ibragimov N. Kh., Shabat A. B., DAN SSSR, 244:1 (1979), 57–61 | MR | Zbl

[13] Ibragimov N. Kh., Shabat A. B., Funkts. analiz i ego prilozh., 14:1 (1980), 25–36 | MR | Zbl

[14] Ibragimov N. Kh., Shabat A. B., Funkts. analiz i ego prilozh., 14:4 (1980), 79–80 | MR | Zbl

[15] Zhiber A. V., Dinamika sploshnoi sredy, no. 44, In-t Gidrodinamiki, Novosibirsk, 1980, 3–14 | MR

[16] Svinolupov S. I., Sokolov V. V., Evolyutsionnye uravneniya vtorogo poryadka, obladayuschie simmetriyami, Deponirovano v VINITI. Reg. No 3927-82 Dep., VINITI, M., 1982 | MR

[17] Rosenhaus V., Kuranen K., Izv. AN ESSR, fiz.-mat., 31:3 (1982), 304–313 | MR

[18] Meshkov A. G., Algebry Li-Beklunda uravnenii vida $u_{00}=H(x, u, u_\nu, u_{0i}, u_{ij})$ v vysshikh razmernostyakh, Deponirovano v VINITI. Reg. No 2136-81 Dep., VINITI, M., 1981

[19] Shirokov P. A., Izv. Kazansk. fiz.-matem. ob-va, ser. 2, 25 (1925), 86–114; Избранные работы по геометрии, изд-во Казанск. ун-та, Казань, 1966, 256–280 | MR

[20] Kruchkovich G. I., DAN SSSR, 115:5 (1957), 862–865 | MR | Zbl