Upper bound for the partition function of~$P(\varphi)_2$ Euclidean field theory with Dirichlet boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 373-381

Voir la notice de l'article provenant de la source Math-Net.Ru

The $P(\varphi)_2$ Euclidean (quantum) field theory on a bounded interval with zero-value boundary conditions is considered. An asymptotic representation of the partition function in terms of the partition function of the free field and a factor that depends on the interaction is discussed. The hypothesis is partly justified. Namely, an upper bound is obtained for the partition function in terms of the right-hand side of the asymptotic expression.
@article{TMF_1983_57_3_a4,
     author = {V. V. Borzov},
     title = {Upper bound for the partition function of~$P(\varphi)_2$ {Euclidean} field theory with {Dirichlet} boundary conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--381},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a4/}
}
TY  - JOUR
AU  - V. V. Borzov
TI  - Upper bound for the partition function of~$P(\varphi)_2$ Euclidean field theory with Dirichlet boundary conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 373
EP  - 381
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a4/
LA  - ru
ID  - TMF_1983_57_3_a4
ER  - 
%0 Journal Article
%A V. V. Borzov
%T Upper bound for the partition function of~$P(\varphi)_2$ Euclidean field theory with Dirichlet boundary conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 373-381
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a4/
%G ru
%F TMF_1983_57_3_a4
V. V. Borzov. Upper bound for the partition function of~$P(\varphi)_2$ Euclidean field theory with Dirichlet boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 373-381. http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a4/