Upper bound for the partition function of $P(\varphi)_2$ Euclidean field theory with Dirichlet boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 373-381 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $P(\varphi)_2$ Euclidean (quantum) field theory on a bounded interval with zero-value boundary conditions is considered. An asymptotic representation of the partition function in terms of the partition function of the free field and a factor that depends on the interaction is discussed. The hypothesis is partly justified. Namely, an upper bound is obtained for the partition function in terms of the right-hand side of the asymptotic expression.
@article{TMF_1983_57_3_a4,
     author = {V. V. Borzov},
     title = {Upper bound for the partition function of~$P(\varphi)_2$ {Euclidean} field theory with {Dirichlet} boundary conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--381},
     year = {1983},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a4/}
}
TY  - JOUR
AU  - V. V. Borzov
TI  - Upper bound for the partition function of $P(\varphi)_2$ Euclidean field theory with Dirichlet boundary conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 373
EP  - 381
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a4/
LA  - ru
ID  - TMF_1983_57_3_a4
ER  - 
%0 Journal Article
%A V. V. Borzov
%T Upper bound for the partition function of $P(\varphi)_2$ Euclidean field theory with Dirichlet boundary conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 373-381
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a4/
%G ru
%F TMF_1983_57_3_a4
V. V. Borzov. Upper bound for the partition function of $P(\varphi)_2$ Euclidean field theory with Dirichlet boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 373-381. http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a4/

[1] Kats M., Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965, 406 pp. | Zbl

[2] Høegh-Krohn R., Commun. Math. Phys., 38 (1974), 195–224 | DOI | MR

[3] Borzov V. V., Matem. zametki, 26:4 (1979), 547–560 | MR | Zbl

[4] Nelson E., J. Funct. Anal., 12 (1973), 211–227 | DOI | MR | Zbl

[5] Saimon B., Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976, 357 pp.

[6] Cannon J., Commun. Math. Phys., 35 (1974), 215–235 | DOI | MR

[7] Gross L., Proc. 5th Berkley Sym. Math. Stat. Prob., 2, 1965, 31–42 | MR

[8] Go Kh.-S., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979, 172 pp.

[9] Gelfand I. M., Yaglom A. M., UMN, XI:1 (1956), 77–114 | MR | Zbl

[10] Montroll E. W., Commun. Pure Appl. Math., 5 (1952), 415–453 | DOI | MR | Zbl

[11] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 2, Mir, M., 1978, 395 pp. | MR

[12] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965, 797 pp. | MR

[13] I. M. Gelfand, N. Ya. Vilenkin, Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Obobschennye funktsii. vyp. 4, Fizmatgiz, M., 1961, 472 pp. | MR

[14] Dimock J., Glimm J., Adv. Math., 12 (1974), 58–83 | DOI | MR | Zbl