Quantum theory of a fermion string with a finite number of degrees of freedom
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 323-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model obtained by freezing infinitely many degrees of freedom of an open fermion string is considered. The system is quantized, and this leads to a set of nonlinear Regge trajectories. The relativistic invariance of the quantum theory is proved.
@article{TMF_1983_57_3_a0,
     author = {M. S. Plyushchai and G. P. Pron'ko and A. V. Razumov},
     title = {Quantum theory of a~fermion string with a~finite number of degrees of freedom},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--337},
     year = {1983},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a0/}
}
TY  - JOUR
AU  - M. S. Plyushchai
AU  - G. P. Pron'ko
AU  - A. V. Razumov
TI  - Quantum theory of a fermion string with a finite number of degrees of freedom
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 323
EP  - 337
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a0/
LA  - ru
ID  - TMF_1983_57_3_a0
ER  - 
%0 Journal Article
%A M. S. Plyushchai
%A G. P. Pron'ko
%A A. V. Razumov
%T Quantum theory of a fermion string with a finite number of degrees of freedom
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 323-337
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a0/
%G ru
%F TMF_1983_57_3_a0
M. S. Plyushchai; G. P. Pron'ko; A. V. Razumov. Quantum theory of a fermion string with a finite number of degrees of freedom. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 3, pp. 323-337. http://geodesic.mathdoc.fr/item/TMF_1983_57_3_a0/

[1] Nambu Y., Lectures for Copenhagen Symp., Copenhagen, 1970; Goto T., Progr. Theor. Phys., 46:5 (1971), 1560–1569 | DOI | MR | Zbl

[2] Rebbi C., Phys. Rep., 12C:1 (1974), 1–73 ; Mandelstam S., Phys. Rep., 13C:6 (1974), 259–353 ; Scherk J., Rev. Mod. Phys., 47:1 (1975), 123–164 | DOI | MR | DOI | DOI | MR

[3] Ramond P., Phys. Rev., D3:10 (1971), 2415–2418 | MR

[4] Neveu A., Schwarz J. H., Nucl. Phys., B31:1 (1971), 86–112 | DOI

[5] Marshall C., Ramond P., Nucl. Phys., B85:2 (1975), 375–414 | DOI

[6] Collins P. A., Tucker R. W., Nucl. Phys., B121:2 (1977), 307–325 | DOI | MR

[7] Pronko G. P., Razumov A. V., Kvantovaya teoriya ogranichennogo klassa dvizhenii relyativistskoi struny, Preprint IFVZ 82-173, IFVE, Serpukhov, 1982

[8] Borodulin V. I., Pronko G. P., Razumov A. V., Kollektivnye koordinaty dlya struny s fermionnymi stepenyami svobody, Preprint IFVE 81-180, IFVE, Serpukhov, 1981

[9] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[10] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[11] Pryce M. H. L., Proc. Roy. Soc., A195:1040 (1948), 62–81 | DOI | MR | Zbl

[12] Newton T. D., Wigner E. P., Rev. Mod. Phys., 21:3 (1949), 400–406 | DOI | Zbl

[13] Gotay M. J., Nester J. M., Hinds G., J. Math. Phys., 19:11 (1978), 2388–2399 | DOI | MR | Zbl