Solution of the Cauchy problem and the commutator function for a tensor wave equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 265-267
Cet article a éte moissonné depuis la source Math-Net.Ru
The Cauchy problem is solved for a relativistic wave equation determined by the operators of exterior differentiation and eodifferentiation. An invariant quantization scheme is constructed, and an expression for the commutator function is obtained explicitly.
@article{TMF_1983_57_2_a9,
author = {A. A. Leonovich},
title = {Solution of the {Cauchy} problem and the commutator function for a~tensor wave equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {265--267},
year = {1983},
volume = {57},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a9/}
}
A. A. Leonovich. Solution of the Cauchy problem and the commutator function for a tensor wave equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 265-267. http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a9/
[1] De Broglie L., Theorie generale des particules a spin, 2nd edition, Gauthier-Villars, Paris, 1954 | Zbl
[2] Kartan E., Teoriya spinorov, IL, M., 1956
[3] Pestov A. B., TMF, 34:1 (1978), 48–58 | MR | Zbl
[4] Sigal I., Matematicheskie problemy relyativistskoi fiziki, Mir, M., 1968 | MR
[5] Chernikov N. A., Shavokhina N. S., Printsipy kvantovoi teorii spinornogo polya v rimanovykh mirakh, Preprint R2-6109, OIYaI, Dubna, 1971 | MR
[6] De Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1957
[7] Likhnerovich A., Teoriya svyaznosti v tselom i gruppy golonomii, IL, M., 1960
[8] Uiler D. A., Gravitatsiya, neitrino i Vselennaya, IL, M., 1962
[9] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl