Explicit solutions of~$O(3)$ and~$O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 238-248

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of elliptic solutions of the $O(3)$ and $O(2,1)$ $\sigma$ models parametrized by arbitrary holomorphie functions (generalization of a singular harmonic mapping) and the previously considered [1] correspondence between chiral models and systems with exponential interaction, elliptic solutions are obtained for one of the two-dimensional Toda chains corresponding to the Kac–Moody algebra parametrized by a holomorphie or an antiholomorphic function. Solutions of the sinh-Gordon equation are given. For the Ernst equation, a solution is generated by the meron sector of the $O(2,1)$ $\sigma$ model which is parametrized by two real functions (cylindrical waves) or a holomorphic function (stationary axisymmetric solutions). A solution of Liouville's equation on a torus is given.
@article{TMF_1983_57_2_a6,
     author = {M. G. Tseitlin},
     title = {Explicit solutions of~$O(3)$ and~$O(2,1)$ chiral models and the associated equations of the two-dimensional {Toda} chain and the {Ernst} equation when the solutions are parametrized by arbitrary functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {238--248},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a6/}
}
TY  - JOUR
AU  - M. G. Tseitlin
TI  - Explicit solutions of~$O(3)$ and~$O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 238
EP  - 248
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a6/
LA  - ru
ID  - TMF_1983_57_2_a6
ER  - 
%0 Journal Article
%A M. G. Tseitlin
%T Explicit solutions of~$O(3)$ and~$O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 238-248
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a6/
%G ru
%F TMF_1983_57_2_a6
M. G. Tseitlin. Explicit solutions of~$O(3)$ and~$O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 238-248. http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a6/