Group-theoretical derivation of path integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 217-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dynamics of nonrelativistic particles in the form of a Feynman path integral is derived from group-theo'retical considerations. A group-theoretical approach is used, this making it possible to construct the quantum theory of an elementary particle on the basis of its symmetry group. The quantum properties of the particle arise from the intertwining of two representations of the symmetry group, one of which describes the local properties of the particle, and the other the particle as a whole. This approach is appIied to the generalized Galileo semigroup, which is obtained from the ordinary Galileo group by replacing the translation subgroup by a semigroup of trajectories (parametrized paths). As a result, the propagator of the particle in an external electromagnetic or gauge field is derived in the form of a path integral. The integration measure, including the weight factor $\exp(iS)$, is uniquely determined by the requirement of invariance.
@article{TMF_1983_57_2_a4,
     author = {M. B. Menskii},
     title = {Group-theoretical derivation of path integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {217--231},
     year = {1983},
     volume = {57},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a4/}
}
TY  - JOUR
AU  - M. B. Menskii
TI  - Group-theoretical derivation of path integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 217
EP  - 231
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a4/
LA  - ru
ID  - TMF_1983_57_2_a4
ER  - 
%0 Journal Article
%A M. B. Menskii
%T Group-theoretical derivation of path integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 217-231
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a4/
%G ru
%F TMF_1983_57_2_a4
M. B. Menskii. Group-theoretical derivation of path integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 217-231. http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a4/

[1] Wigner E., Ann. Math., 40:1 (1939), 149–204 | DOI | MR | Zbl

[2] Newton T., Wigner E., Rev. Mod. Phys., 21 (1949), 400–406 | DOI | Zbl

[3] Wightman A. S., Rev. Mod. Phys., 34:4 (1962), 845–872 | DOI | MR

[4] Menskii M. B., Problemy teorii gravitatsii i elementarnykh chastits, vyp. 7, no. 16(46), Tr. VNIIFTRI, M., 1972, 115–124

[5] Mensky M. B., Commun. Math. Phys., 47 (1976), 97–108 | DOI | MR | Zbl

[6] Menskii M. B., Metod indutsirovannykh predstavlenii: prostranstvo-vremya i kontseptsiya chastits, Nauka, M., 1976

[7] Mensky M. B., Lett. Math. Phys., 2:3 (1978), 175–180 | DOI | MR

[8] Mensky M. B., Lett. Math. Phys., 3:6 (1979), 513–520 | DOI | MR

[9] Menskii M. B., Teoretiko-gruppovye metody v fizike, Tr. mezhdunarodnogo seminara po primeneniyu teorii grupp v fizike, t. II (Zvenigorod, 1979), Nauka, M., 1980, 291–299

[10] Menskii M. B., Mezhdunarodnyi seminar po funktsionalnym metodam v kvantovoi teorii polya i statistike, Rasshirennye tezisy dokladov (Moskva, 1971); Препринт ФИАН, No 140, ФИ АН СССР, М., 1971, с. 29

[11] Menskii M. B., Problemy teorii gravitatsii i elementarnykh chastits, vyp. 7, no. 16(46), Tr. VNIIFTRI, M., 1972, 73–83

[12] Menskii M. B., TMF, 18:2 (1974), 190–202 | MR

[13] Menskii M. B., Gruppa putei: izmereniya, polya, chastitsy, Nauka, M., 1983 | MR

[14] Adler M., J. Math. Phys., 20 (1979), 60–67 | DOI | MR | Zbl