Time asymptotics of the velocity autocorrelation function in the Lorentz model
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 290-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a Lorentz gas of hard spheres a functional formalism is introduced that makes it possible to represent the solution of the BBGKY hierarchy with arbitrary initial conditions in terms of a Green's operator which gives the solution under special conditions, namely, the absence of correlations at the initial time between the test particle and scatterers. It is shown that under some assumptions that are natural from the physical point of view the Laplace transform of the Green's operator and the corresponding mass operator has on the real negative half-axis in the plane of the Laplace variable $z$ a discontinuity with asymptotic behavior $|x|^{3/2}$, $x=\operatorname{Re}z$. Exact expressions are obtained for the operator coefficients in the asymptotic behavior, these generalizing the results of the ring approximation.
@article{TMF_1983_57_2_a12,
     author = {V. D. Ozrin},
     title = {Time asymptotics of the velocity autocorrelation function in the {Lorentz} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {290--303},
     year = {1983},
     volume = {57},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a12/}
}
TY  - JOUR
AU  - V. D. Ozrin
TI  - Time asymptotics of the velocity autocorrelation function in the Lorentz model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 290
EP  - 303
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a12/
LA  - ru
ID  - TMF_1983_57_2_a12
ER  - 
%0 Journal Article
%A V. D. Ozrin
%T Time asymptotics of the velocity autocorrelation function in the Lorentz model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 290-303
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a12/
%G ru
%F TMF_1983_57_2_a12
V. D. Ozrin. Time asymptotics of the velocity autocorrelation function in the Lorentz model. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 290-303. http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a12/

[1] Pomeau Y.,Resibois P., Phys. Rep., 19c:2 (1975), 64–199

[2] Dorfman J. R., Physica, 106A:1, 2 (1981), 77-1-01 | DOI | MR

[3] Ernst M. H., Weyland A., Phys. Lett., 34A (1971), 39–40 | DOI

[4] Weyland A., J. Math. Phys., 15:11 (1974), 1942–1943 | DOI

[5] Keyes T., Mercer J., Physica, 95A:3 (1979), 473–486 ; Masters A. J., Keyes T., Phys. Rev. A, 25:2 (1982), 1010–1022 | DOI | MR | DOI

[6] Ernst M. H., Dorfman J. R., Hoegy W., van Leeuwen J. M. J., Physica, 45:1 (1969), 127–146 | DOI | MR

[7] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike. Izbrannye trudy, t. 2, Naukova dumka, Kiev, 1970 | MR

[8] Rezibua P., de Lener M., Klassicheskaya kineticheskaya teoriya zhidkostei i gazov, Mir, M., 1980

[9] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl

[10] Van Leeuwen J. M. J., Weyland A., Physica, 36:3 (1967), 457–490 ; 38:1 (1968), 35–47 | DOI | DOI