Renormalization-group approach in the theory of turbulence: The dimensions of composite operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 268-281
Cet article a éte moissonné depuis la source Math-Net.Ru
In the framework of the renormalization-group approach in the theory of turbulence proposed by De Dominieis and Martin [1], the problem of renormalization and determination of the critical dimensions of composite operators is discussed. The renormalization of the system of operators of canonical dimension $4$, which includes the operator $F=\varphi\Delta\varphi$, where $\varphi$ is the velocity field, is considered. It is shown that the critical dimension $\Delta_F$ associated with this operator is exactly equal to the Kolmogorov dimension: $\Delta_F=0$. The Appendix gives brief proofs of, first, a theorem on the equivalence of an arbitrary stochastic problem and quantum field theory and, second, a theorem that determines the restriction of the Green's functions of a stochastic problem to a simultaneity surface.
@article{TMF_1983_57_2_a10,
author = {L. Ts. Adzhemyan and A. N. Vasil'ev and Yu. M. Pis'mak},
title = {Renormalization-group approach in the theory of turbulence: {The} dimensions of composite operators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {268--281},
year = {1983},
volume = {57},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a10/}
}
TY - JOUR AU - L. Ts. Adzhemyan AU - A. N. Vasil'ev AU - Yu. M. Pis'mak TI - Renormalization-group approach in the theory of turbulence: The dimensions of composite operators JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1983 SP - 268 EP - 281 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a10/ LA - ru ID - TMF_1983_57_2_a10 ER -
%0 Journal Article %A L. Ts. Adzhemyan %A A. N. Vasil'ev %A Yu. M. Pis'mak %T Renormalization-group approach in the theory of turbulence: The dimensions of composite operators %J Teoretičeskaâ i matematičeskaâ fizika %D 1983 %P 268-281 %V 57 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a10/ %G ru %F TMF_1983_57_2_a10
L. Ts. Adzhemyan; A. N. Vasil'ev; Yu. M. Pis'mak. Renormalization-group approach in the theory of turbulence: The dimensions of composite operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 268-281. http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a10/
[1] De Dominicis, Martin P. C., Phys. Rev., A19 (1979), 419–421 | DOI
[2] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, t. 2, Nauka, M., 1967, 720 pp.
[3] Parisi G., Wu Y. S., Scientia Sinica, 24 (1981), 483–488 | MR
[4] Alfaro J., Sakita B., Derivation of quenched momentum prescription by means of stochastic quantization, Preprint CCNY-HEP-82/8, CUNY, New-York, 1982 | MR
[5] Floratos E., Iliopoulos J., Equivalence of stochastic and canonical quantization in perturbation theory, Preprint LPTENS 82/31, LPTENS, Paris, 1982 | MR
[6] Martin P. C., Siggia E. D., Rose H. A., Phys. Rev., A8 (1973), 423–437 | DOI
[7] De Dominicis, Peliti L., Phys. Rev., B18 (1978), 353–376 | DOI