Relativistic partition function and polarization properties of a Fermi gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 182-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A relativistically invariant partition function method is developed in the framework of quantum field theory for an ideal Fermi gas. This method is the basis for a description of the thermodynamic and statistical properties of gases in arbitrary frames of reference. It is shown that an ideal equilibrium gas of massless fermions moving as a whole can exhibit a polarization. The results may have applications in the description of high-energy hadron-nucleus reactions and heavy-ion collisions.
@article{TMF_1983_57_2_a1,
     author = {G. M. Zinovjev and Yu. M. Sinyukov and V. P. Shelest},
     title = {Relativistic partition function and polarization properties of {a~Fermi} gas},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {182--192},
     year = {1983},
     volume = {57},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a1/}
}
TY  - JOUR
AU  - G. M. Zinovjev
AU  - Yu. M. Sinyukov
AU  - V. P. Shelest
TI  - Relativistic partition function and polarization properties of a Fermi gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 182
EP  - 192
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a1/
LA  - ru
ID  - TMF_1983_57_2_a1
ER  - 
%0 Journal Article
%A G. M. Zinovjev
%A Yu. M. Sinyukov
%A V. P. Shelest
%T Relativistic partition function and polarization properties of a Fermi gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 182-192
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a1/
%G ru
%F TMF_1983_57_2_a1
G. M. Zinovjev; Yu. M. Sinyukov; V. P. Shelest. Relativistic partition function and polarization properties of a Fermi gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 2, pp. 182-192. http://geodesic.mathdoc.fr/item/TMF_1983_57_2_a1/

[1] Hagedorn R., Rafelski J., Phys. Lett., 97B (1980), 136 ; Hagedorn R., How to deal with relativistic heavy ion collisions, Preprint TH. 3014-CERN, 1981 | DOI | Zbl

[2] Gorenshtein M. I., Zinovev G. M., Petrov V. K., Shelest V. P., TMF, 52:3 (1982), 346–361 | MR

[3] Touschek B., Nuovo Cim., 58B (1968), 295–306 | DOI

[4] Sinyukov Yu. M., On the relativistic statistical physics and thermodynamics of ideal gas, Preprint ITP-82-94E, ITP, Kiev, 1982; Phys. Lett., 1983 (to appear)

[5] Ter Haar D., Wergeland H., Phys. Rep., 1C (1971), 31 | DOI | Zbl

[6] Callen H., Horwitz C., Amer. J. Phys., 39 (1971), 938–961 | DOI

[7] Chodos A., Jaffe R., Johnson K., Thorn C., Weisskopf V., Phys. Rev., D9 (1974), 3471–3494 ; Johnson K., Acta Phys. Polon., B6 (1975), 865–877 | MR

[8] Mamaev S. G., Trunov N. N., Izv. vuzov SSSR, fizika, 7 (1980), 9–20 | MR

[9] Landsberg P., Nature (London), 212 (1966), 571–583 | DOI

[10] Casimir H., Proc. Kon. Ned. Acad. Wetenschap, 51 (1948), 793–811