Coherent states for~$Sp(2,2)$ and geometrized decay model for an unstable system
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 1, pp. 55-62
Voir la notice de l'article provenant de la source Math-Net.Ru
The decay amplitude of an unstable particle in a relativistic geometrized model is
calculated. The states of the unstable system at an arbitrary instant of time are
constructed as coherent states on the discrete series of unitary irreducible
representations of the group $Sp(2,2)$ and are parametrized by a point of the
hyperboloid $\xi^2=-\rho^2$. The radius of curvature $\rho$ is related to the coupling constant and the energy. The transition to the limit of stable objects is investigated.
@article{TMF_1983_57_1_a6,
author = {I. A. Filanovskii},
title = {Coherent states for~$Sp(2,2)$ and geometrized decay model for an unstable system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {55--62},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_1_a6/}
}
TY - JOUR AU - I. A. Filanovskii TI - Coherent states for~$Sp(2,2)$ and geometrized decay model for an unstable system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1983 SP - 55 EP - 62 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1983_57_1_a6/ LA - ru ID - TMF_1983_57_1_a6 ER -
I. A. Filanovskii. Coherent states for~$Sp(2,2)$ and geometrized decay model for an unstable system. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 1, pp. 55-62. http://geodesic.mathdoc.fr/item/TMF_1983_57_1_a6/