Approximate solution of matrix $N\times N$ models at large $N$
Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 1, pp. 4-11
Cet article a éte moissonné depuis la source Math-Net.Ru
A method of approximate solution of matrix $N\times N$ models at large $N$ is proposed and used to obtain explicit solutions for matrix $\varphi^4$ models. In the zero- and onedimensional cases, the results agree with those obtained by Brezin et al. [1].
@article{TMF_1983_57_1_a0,
author = {A. A. Slavnov},
title = {Approximate solution of matrix~$N\times N$ models at large~$N$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {4--11},
year = {1983},
volume = {57},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_57_1_a0/}
}
A. A. Slavnov. Approximate solution of matrix $N\times N$ models at large $N$. Teoretičeskaâ i matematičeskaâ fizika, Tome 57 (1983) no. 1, pp. 4-11. http://geodesic.mathdoc.fr/item/TMF_1983_57_1_a0/
[1] Brezin et al., Commun. Math. Phys., 59:1 (1978), 35–51 | DOI | MR | Zbl
[2] G'tHooft, Nucl. Phys., B72:2 (1974), 461–476
[3] Slavnov A. A., TMF, 51:3 (1982), 307–316 | MR
[4] Slavnov A. A., Phys. Lett., 112B:2 (1982), 154–157 | DOI | MR
[5] Aizenman M., Commun. Math. Phys., 86 (1982), 151–164 | DOI | MR
[6] Frölich Y., Nucl. Phys., B200 (1982), 281–295 | DOI