Generalized convexity property for the energy of a quantum-mechanical system
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 432-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The energy $E$ of the lowest discrete level of a quantum-mechanical system is considered as a function of a parameter $\lambda$, that occurs linearly in the energy operator. An inequality that generalizes the well-known convexity property of the function $E(\lambda)$ is derived. The application of the generalized convexity property is illustrated by the example of the calculation of bounds for the total energies and the energies of the electron-nucleus interaction in the ground state for two-electron atoms.
@article{TMF_1983_56_3_a9,
     author = {T. K. Rebane},
     title = {Generalized convexity property for the energy of a~quantum-mechanical system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {432--438},
     year = {1983},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a9/}
}
TY  - JOUR
AU  - T. K. Rebane
TI  - Generalized convexity property for the energy of a quantum-mechanical system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 432
EP  - 438
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a9/
LA  - ru
ID  - TMF_1983_56_3_a9
ER  - 
%0 Journal Article
%A T. K. Rebane
%T Generalized convexity property for the energy of a quantum-mechanical system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 432-438
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a9/
%G ru
%F TMF_1983_56_3_a9
T. K. Rebane. Generalized convexity property for the energy of a quantum-mechanical system. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 432-438. http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a9/

[1] Silverman J. N., van Leuven J. C., Chem. Phys. Lett., 7:1 (1970), 37–42 | DOI | MR

[2] Silverman J. N., van Leuven J. C., Chem. Phys. Lett., 7:6 (1970), 640 | MR

[3] Bete G., Solpiter E., Kvantovaya mekhanika atomov s odnim i dvumya elektronami, § 33, GIFML, M., 1960

[4] Rebane T. K., Opt. i spektr., 34:5 (1973), 846–853

[5] Narnhofer H., Thirring W., Acta Phys. Austriaca, 41:2 (1975), 281–297 | MR