Generalized convexity property for the energy of a quantum-mechanical system
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 432-438
Cet article a éte moissonné depuis la source Math-Net.Ru
The energy $E$ of the lowest discrete level of a quantum-mechanical system is considered as a function of a parameter $\lambda$, that occurs linearly in the energy operator. An inequality that generalizes the well-known convexity property of the function $E(\lambda)$ is derived. The application of the generalized convexity property is illustrated by the example of the calculation of bounds for the total energies and the energies of the electron-nucleus interaction in the ground state for two-electron atoms.
@article{TMF_1983_56_3_a9,
author = {T. K. Rebane},
title = {Generalized convexity property for the energy of a~quantum-mechanical system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {432--438},
year = {1983},
volume = {56},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a9/}
}
T. K. Rebane. Generalized convexity property for the energy of a quantum-mechanical system. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 432-438. http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a9/
[1] Silverman J. N., van Leuven J. C., Chem. Phys. Lett., 7:1 (1970), 37–42 | DOI | MR
[2] Silverman J. N., van Leuven J. C., Chem. Phys. Lett., 7:6 (1970), 640 | MR
[3] Bete G., Solpiter E., Kvantovaya mekhanika atomov s odnim i dvumya elektronami, § 33, GIFML, M., 1960
[4] Rebane T. K., Opt. i spektr., 34:5 (1973), 846–853
[5] Narnhofer H., Thirring W., Acta Phys. Austriaca, 41:2 (1975), 281–297 | MR