Multiphase behavior of large interacting molecules on a flat square lattice in the
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 405-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the Percus–Yevick approximation, the total and direct correlation matrices of the molecules of a lattice gas are found in the case of infinite repulsion of first neighbors and finite interaction $\varepsilon$ ($\varepsilon<0$) of second neighbors on a square lattice. Calculations are made of the thermodynamic functions, whose behavior reveals the occurrence in the system of phase transitions, which are of the continuous (of the type of ordering) and first kind. The critical temperature $x_{\mathrm c}=\exp(-\beta_{\mathrm B}\varepsilon)=2{.}933$ ($\beta_{\mathrm B}=1/k_{\mathrm B}T$ is the reciprocal absolute temperature) and the critical density $\rho_{\mathrm c}=0{.}158$ are determined. The phase diagram of the system is constructed.
@article{TMF_1983_56_3_a7,
     author = {Yu. V. Shulepov},
     title = {Multiphase behavior of large interacting molecules on a~flat square lattice in the},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--417},
     year = {1983},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a7/}
}
TY  - JOUR
AU  - Yu. V. Shulepov
TI  - Multiphase behavior of large interacting molecules on a flat square lattice in the
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 405
EP  - 417
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a7/
LA  - ru
ID  - TMF_1983_56_3_a7
ER  - 
%0 Journal Article
%A Yu. V. Shulepov
%T Multiphase behavior of large interacting molecules on a flat square lattice in the
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 405-417
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a7/
%G ru
%F TMF_1983_56_3_a7
Yu. V. Shulepov. Multiphase behavior of large interacting molecules on a flat square lattice in the. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 405-417. http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a7/

[1] Shulepov Yu. V., Aksenenko E. V., Reshetochnyi gaz, Naukova dumka, Kiev, 1981

[2] Aksenenko E. V., Pashitskii E. A., Shulepov Yu. V., Fazovye perekhody v submonosloinykh adsorbirovannykh plenkakh, Preprint IF AN USSR, No 13, 1978

[3] Kaye R. D., Burley D. M., J. Phys. A: Math. Nucl. Gen., 7:7 (1974), 843–858 | DOI | Zbl

[4] Aksenenko E. V., Shulepov Yu. V., UFZh, 23:9 (1978), 1510–1516

[5] Aksenenko E. V., Shulepov Yu. V., J. Phys. A: Math. Gen., 15:8 (1982), 2515–2522 | DOI

[6] Runnels L. K., Salvant J. P., Streifer H. R., J. Chem. Phys., 52:5 (1970), 2352–2363 | DOI

[7] Springgate M. W., Poland D., J. Chem. Phys., 62:2 (1975), 680–689 | DOI | MR

[8] Springgate M. W., Poland D., Phys. Rev. A, 20:3 (1979), 1267–1283 | DOI

[9] Aksenenko E. V., Shulepov Yu. V., UFZh, 24:8 (1979), 1192–1201

[10] Aksenenko E. V., Shulepov Yu. V., UFZh, 20:4 (1981), 536–540

[11] Shulepov Yu. V., Aksenenko E. V., J. Phys. A: Math. Gen. (to appear) | Zbl

[12] Percus J. K., Yevick G. J., Phys. Rev., 110:1 (1958), 1–8 | DOI | MR

[13] Percus J. K., Phys. Rev. Lett., 8:11 (1962), 462–464 | DOI

[14] Wertheim M. S., J. Chem. Phys., 8:4 (1967), 927–934 | MR

[15] Shulepov Yu. V., UFN, 19:7 (1974), 1080–1085

[16] Verlet L., Physica, 30:1 (1964), 95–104 | DOI | MR

[17] Rashbruk Dzh., “Ravnovesnye teorii zhidkogo sostoyaniya”, Fizika prostykh zhidkostei, Sb., Mir, M., 1971, 30–62

[18] Levesque D., Verlet L., Phys. Lett., 11:1 (1964), 36–37 | DOI | MR

[19] Robledo A., Farquhar I. E., Physica, 84A:3 (1976), 449–471 | DOI | MR

[20] Jancovici B., Physica, 31:7 (1965), 1017–1028 | DOI

[21] Aksenenko E. V., Shulepov Yu. V., TMF, 47:3 (1981), 387–394

[22] Pokrovskii V. L., Talapov A. L., ZhETF, 78:1 (1980), 269–295 | MR

[23] Berezin I. S., Zhidkov N. P., Metody vychislenii, t. I, Nauka, M., 1968 | MR

[24] Kinzel W., Schick M., Phys. Rev., B24:1 (1981), 324–328 | DOI | MR