On the infinite-dimensional noncommutative Lie--B\"acklund algebra associated with the equations of one-dimensional gas dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 368-386

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the infinite-dimensional noncommutative Lie–Bäcklund algebra associated with the equations of one-dimensional plane isentropic flow of a gas and with the infinite set of systems of evolution equations associated with them. Infinite series of invariant solutions and conservation laws and $L-A$ pairs for all these equations are obtained. A new operator method for finding invariant solutions is proposed.
@article{TMF_1983_56_3_a4,
     author = {M. B. Sheftel},
     title = {On the infinite-dimensional noncommutative {Lie--B\"acklund} algebra associated with the equations of one-dimensional gas dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--386},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a4/}
}
TY  - JOUR
AU  - M. B. Sheftel
TI  - On the infinite-dimensional noncommutative Lie--B\"acklund algebra associated with the equations of one-dimensional gas dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 368
EP  - 386
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a4/
LA  - ru
ID  - TMF_1983_56_3_a4
ER  - 
%0 Journal Article
%A M. B. Sheftel
%T On the infinite-dimensional noncommutative Lie--B\"acklund algebra associated with the equations of one-dimensional gas dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 368-386
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a4/
%G ru
%F TMF_1983_56_3_a4
M. B. Sheftel. On the infinite-dimensional noncommutative Lie--B\"acklund algebra associated with the equations of one-dimensional gas dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 368-386. http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a4/