Trace formulas for resonances
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 439-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the dissipative operator that arises in the problem of resonance scattering of plane waves by a one-dimensional crystal the first trace formula is obtained and a way of obtaining the others is indicated. The high-energy asymptotic behavior of the reflection coefficient is found as well.
@article{TMF_1983_56_3_a10,
     author = {A. V. Rybkin},
     title = {Trace formulas for resonances},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {439--447},
     year = {1983},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a10/}
}
TY  - JOUR
AU  - A. V. Rybkin
TI  - Trace formulas for resonances
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 439
EP  - 447
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a10/
LA  - ru
ID  - TMF_1983_56_3_a10
ER  - 
%0 Journal Article
%A A. V. Rybkin
%T Trace formulas for resonances
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 439-447
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a10/
%G ru
%F TMF_1983_56_3_a10
A. V. Rybkin. Trace formulas for resonances. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 439-447. http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a10/

[1] Buslaev V. S., “Formuly sledov i nekotorye asimptoticheskie otsenki yadra rezolventy dlya operatora Shredingera v trekhmernom prostranstve”, Problemy matematicheskoi fiziki, LGU, L., 1966, 102–132

[2] Marchenko V. A., Operatory Shturma-Liuvilya i ikh prilozheniya, Naukova dumka, K., 1977 | MR

[3] Firsova N. E., “Formuly sledov dlya vozmuschennogo odnomernogo operatora Shredingera s periodicheskim potentsialom”, Problemy matematicheskoi fiziki, no. 7, LGU, L., 1974, 162–177 | MR

[4] Adamyan V. M., Pavlov B. S., Vestn. LGU, ser. matematika, mekhanika, 1979, no. 7

[5] Laks P., Filipps R., Teoriya rasseyaniya, Mir, M., 1971 | MR

[6] Devison S., Levin D. Zh., Poverkhnostnye (tammovskie) sostoyaniya, Mir, M., 1973, 163 pp.

[7] Pavlov B. S., “O nepreryvnom spektre rezonansov”, Problemy matematicheskoi fiziki, no. 8, LGU, L., 1976, 119–137 | MR

[8] Pavlov B. S., Smirnov N. V., Vestn. LGU, ser. matematika, mekhanika, 1977, no. 13, 71–80 | MR | Zbl

[9] Pavlov B. S., “Teoriya dilatatsii i spektralnyi analiz nesamosopryazhennykh differentsialnykh operatorov”, Tr. 7-i zimnei shkoly po matematicheskomu programmirovaniyu i smezhnym voprosam, TsEMI AN SSSR, M., 1976, 3–70

[10] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, Mir, M., 1960 | MR

[11] Firsova N. E., “Rimanova poverkhnost kvaziimpulsa i teoriya rasseyaniya dlya vozmuschennogo operatora Khilla”, Tr. seminarov LOMI, 51, Nauka, L., 1975, 183–196 | MR | Zbl