Hamiltonian structures for integrable models of field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 323-343
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that for classical continuous integrable field theory models the Poisson
brackets, defined in $r$-matrix form, admit a simple geometrical interpretation in
terms of current algebra. In such an interpretation, the phase spaces of the models are integral manifolds of a standard symplectic structure on the current algebra. For discrete integrable systems, integral manifolds are constructed for discrete $r$-matrix brackets for rational r matrices associated with the classical Lie algebras. It is shown that in the discrete ease there is a multiplicative operation of averaging that makes it possible to obtain trigonometric and elliptic $L$ operators from rational operators. This averaging is explicitly performed for the single-pole $L$ operator associated with the algebra $\mathfrak{sl}(2)$.
@article{TMF_1983_56_3_a0,
author = {N. Yu. Reshetikhin and L. D. Faddeev},
title = {Hamiltonian structures for integrable models of field theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--343},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a0/}
}
TY - JOUR AU - N. Yu. Reshetikhin AU - L. D. Faddeev TI - Hamiltonian structures for integrable models of field theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1983 SP - 323 EP - 343 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a0/ LA - ru ID - TMF_1983_56_3_a0 ER -
N. Yu. Reshetikhin; L. D. Faddeev. Hamiltonian structures for integrable models of field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 3, pp. 323-343. http://geodesic.mathdoc.fr/item/TMF_1983_56_3_a0/