Linear connection in theories of Kaluza–Klein type
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 246-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear connection on a principal fiber bundle is proposed for which the scalar curvature is a sum of Lagrangians of gauge fields and of the general theory of relativity. The linear connection is constructed on the basis of requirements that have a geometrical meaning. and it possesses torsion. The presence or absence of a cosmological constant depends on the choice of the linear connection on the structure group, which can be an arbitrary Lie group.
@article{TMF_1983_56_2_a7,
     author = {M. O. Katanaev},
     title = {Linear connection in theories of {Kaluza{\textendash}Klein} type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {246--250},
     year = {1983},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a7/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Linear connection in theories of Kaluza–Klein type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 246
EP  - 250
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a7/
LA  - ru
ID  - TMF_1983_56_2_a7
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Linear connection in theories of Kaluza–Klein type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 246-250
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a7/
%G ru
%F TMF_1983_56_2_a7
M. O. Katanaev. Linear connection in theories of Kaluza–Klein type. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 246-250. http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a7/

[1] Kaluza T., Sitzungsber. Preuss. Akad. Wiss., 1921, 966–972; Albert Einshtein i teoriya gravitatsii, Mir, M., 1979, 529–534 ; Klein O., Z. Phys., 37 (1926), 895–906 | MR | DOI | Zbl

[2] Kobayashi S., Nomizu K., Foundations of differential geometry, v. 1, Interscience Publishers, N.-Y.–London, 1963, 307 pp. ; Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 334 | MR | Zbl | MR

[3] De Witt B., Dynamical theory of groups and fields, Gordon and Breach, N.-Y.–London–Paris, 1965, 248 pp. | MR

[4] Korner R., Ann. Inst. Henri Poincare, A9:2 (1968), 143–152

[5] Cho Y. M., J. Math. Phys., 16:10 (1975), 2029–2035 | DOI | MR

[6] Chang L. N., Macrae K. I., Mansouri F., Phys. Lett., 57B:1 (1975), 59–62 ; Phys. Rev., D13:2 (1976), 235–249 | DOI

[7] Orzalesi C. A., Pauri M., Phys. Lett., 107B:3 (1981), 186–190 | DOI | MR

[8] Cho Y. M., Freund P. O. O., Phys. Rev., B12:6 (1975), 1711–1720

[9] Katanaev M. O., TMF, 54:3 (1983), 381–387 | MR | Zbl

[10] Kopczynski W., Acta Phys. Pol., B10:5 (1979), 365–367 | MR