Infrared divergences in a model related to the Heisenberg algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 216-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model describing a trilinear interaction of an infinite-component massive fermion field with two massless scalar fields is proposed. The symmetry of the interaction is related to the Heisenberg algebra. The asymptotic Hamiltonian is exactly diagonalized in the sector containing one massive particle, and the properties of the resulting representations of the canonical commutation relations of the massless fields are discussed.
@article{TMF_1983_56_2_a5,
     author = {I. V. Krivchenkov and N. A. Sveshnikov},
     title = {Infrared divergences in a~model related to the {Heisenberg} algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {216--229},
     year = {1983},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a5/}
}
TY  - JOUR
AU  - I. V. Krivchenkov
AU  - N. A. Sveshnikov
TI  - Infrared divergences in a model related to the Heisenberg algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 216
EP  - 229
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a5/
LA  - ru
ID  - TMF_1983_56_2_a5
ER  - 
%0 Journal Article
%A I. V. Krivchenkov
%A N. A. Sveshnikov
%T Infrared divergences in a model related to the Heisenberg algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 216-229
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a5/
%G ru
%F TMF_1983_56_2_a5
I. V. Krivchenkov; N. A. Sveshnikov. Infrared divergences in a model related to the Heisenberg algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 216-229. http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a5/

[1] Kulish P. P., Faddeev L. D., TMF, 4:2 (1970), 153–170 | Zbl

[2] Nelson C. A., Nucl. Phys., B181:2 (1981), 141–156 | DOI

[3] Nelson C. A., Nucl. Phys., B186:2 (1981), 187–204 | DOI

[4] Frenkel J., Taylor J. C., Gatheral A., Nucl. Phys., B194:2 (1982), 172–181 | DOI

[5] Bazhanov V. V., Pronko G. P., Stroganov Yu. G., Asimptoticheskie sostoyaniya v teorii s neabelevoi simmetriei, Preprint OTF 76-113, IFVE, Serpukhov, 1976

[6] Popov V. N., Wu T. T., Phys. Lett., 85B:4 (1979), 395–398 | DOI

[7] Cornwall T. M., Tiktopoulos G., Phys. Rev., D13:12 (1977), 3370–3397

[8] Kinoshita T., Ukawa A., Phys. Rev., D16 (1977), 332–346 | MR

[9] Sveshnikov N. A., Tr. mezhdunarodnogo seminara “Problemy fiziki vysokikh energii i kvantovoi teorii polya” (20–27 sentyabrya 1980 g.), t. 1, IFVE, Serpukhov, 1980, 116–124

[10] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965, 235 pp. | MR

[11] Razumov A. V., Solovev V. O., Taranov A. Yu., TMF, 49:1 (1981), 48–62 | MR

[12] Arai A., J. Math. Phys., 22:11 (1981), 2539–2548 | DOI | MR | Zbl

[13] Emkh Zh., Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976, 423 pp. | MR

[14] Kibble A. W., J. Math. Phys., 9 (1968), 315–324 | DOI