Bäcklund transformation for the Liouville equation and gauge conditions in the theory of a relativistic string
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 180-191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the gauge conditions in the theory of a relativistic string, which make it possible to replace the nonlinear Liouville equation by the d'Alembert equation, are a direct consequence of the Bäcklund transformation relating the solutions of these equations. A purely geometrical derivation is given of the Bäcklund transformations for the Liouville equation. A classical theory of a relativistic string is constructed in the $t=\tau$ gauge using the moving frame formalism and exterior differential forms in the theory of surfaces. The moving frame on the string trajectory is chosen in a special way. As a result, the theory of a string in fourdimensional space-time reduces to the d'Alembert equation for a single scalar function.
@article{TMF_1983_56_2_a2,
     author = {B. M. Barbashov and V. V. Nesterenko},
     title = {B\"acklund transformation for the {Liouville} equation and gauge conditions in the theory of a~relativistic string},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {180--191},
     year = {1983},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a2/}
}
TY  - JOUR
AU  - B. M. Barbashov
AU  - V. V. Nesterenko
TI  - Bäcklund transformation for the Liouville equation and gauge conditions in the theory of a relativistic string
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 180
EP  - 191
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a2/
LA  - ru
ID  - TMF_1983_56_2_a2
ER  - 
%0 Journal Article
%A B. M. Barbashov
%A V. V. Nesterenko
%T Bäcklund transformation for the Liouville equation and gauge conditions in the theory of a relativistic string
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 180-191
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a2/
%G ru
%F TMF_1983_56_2_a2
B. M. Barbashov; V. V. Nesterenko. Bäcklund transformation for the Liouville equation and gauge conditions in the theory of a relativistic string. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 180-191. http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a2/

[1] Polyakov A. M., Phys. Lett., 103B (1981), 207–210 ; 211–213 | DOI | MR | MR

[2] Lund F., Regge T., Phys. Rev., D14 (1976), 1524–1535 | MR | Zbl

[3] Omnes R., Nucl. Phys., B149 (1979), 269–284 | DOI | MR

[4] Barbashov B. M., Koshkarov A. L., TMF, 39:1 (1979), 27–34 | MR

[5] Barbashov B. M., Nesterenko V. V., Chervyakov A. M., TMF, 40:1 (1979), 15–17 | MR

[6] Zheltukhin A. A., YaF, 33 (1981), 1723–1730 ; ТМФ, 52:1 (1982), 73–88 | MR | MR

[7] Kamimura K., Lett. Math. Phys., 4 (1980), 115–122 | DOI | MR

[8] Barbashov B. M., Nesterenko V. V., Chervyakov A. M., TMF, 52:1 (1982), 3–13 | MR | Zbl

[9] Barbashov B. M., Nesterenko V. V., Chervyakov A. M., Commun. Math. Phys., 84 (1982), 471–481 | DOI | MR | Zbl

[10] Barbashov B. M., Koshkarov A. L., Chervyakov A. M., Uravneniya vlozheniya mirovoi poverkhnosti relyativistskoi struny v mnogomernye prostranstva, Soobschenie R2-82-647, OIYaI, Dubna, 1982

[11] Scherk J., Rev. Mod. Phys., 47 (1975), 123 | DOI | MR

[12] Barbashov B. M., Nesterenko V. V., EChAYa, 9:5 (1978), 709–758 | MR

[13] Favar Zh., Kurs lokalnoi differentsialnoi geometrii, IL, M., 1960

[14] Flanders H., Differential forms, Academic Press, New York, London, 1963 | MR | Zbl

[15] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948

[16] Solitony v deistvii, eds. K. Longren, E. Skott, Mir, M., 1981, 26 pp. | MR

[17] Braaten E., Curtright T., Thorn C., Quantum Backlund transformations for the Liouville theory, Preprint UFTP-82-18, University of Florida, 1982 | MR

[18] Barbashov B. M., Nesterenko V. V., Bäcklund transformation for the Lionville equation and gauge conditions in the relativistic string theory, JINR preprint E2-82-922, JINR, Dubna, 1982 | MR

[19] Eisenhart L. P., A treatise on the differential geometry of curves and surfaces, Dover Publication, INC, N. Y., 1960 | MR

[20] Barbashov B. M., Nesterenko V. V., Fortschr. Phys., B28:8/9 (1980), 427–464 | DOI | MR

[21] Barbashov B. M., Nesterenko V. V., Hadronic J., 5 (1982), 659 | MR | Zbl

[22] Marnelius M., Nucl. Phys., B211 (1983), 14–28 | DOI | MR

[23] Gervais J. L., Neveu A., Nucl. Phys., B199 (1982), 59 ; B209, 125–145 | DOI | MR | MR

[24] Curtright T. L., Thorn C. B., Phys. Rev. Lett., 48:19 (1982), 1309 | DOI | MR

[25] D'Hoker E., Jackiw R., Phys. Rev., D15:12 (1982), 3517–3542 | MR

[26] Durhus E., Olesen P., Petersen J. L., Nucl. Phys., B196 (1982), 498 | DOI

[27] Honerkamp J., J. Math. Phys., 22 (1981), 277–281 | DOI | MR | Zbl