Sturm expansions in many-fermion problems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 272-287
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A generalization of the method of Sturm expansions is the basts of a systematic
approach proposed for the construction of a complete system of intermediate states in the perturbation problem for stationary states of many-fermion systems. A time-independent expansion of the Green's function is constructed with respect to a complete set of antisymmetric functions, which include quasiparticle excitations of Sturm type. It is shown that in the case of single-particle perturbations one can completely avoid integration over continuum states, and in the case of perturbations that contain two-body interactions the multiplicity of the integrals can be significantly reduced. A diagram technique is developed for calculating the terms of the perturbation theory expansion.
			
            
            
            
          
        
      @article{TMF_1983_56_2_a10,
     author = {A. I. Sherstyuk},
     title = {Sturm expansions in many-fermion problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {272--287},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a10/}
}
                      
                      
                    A. I. Sherstyuk. Sturm expansions in many-fermion problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 272-287. http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a10/
