Sturm expansions in many-fermion problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 272-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the method of Sturm expansions is the basts of a systematic approach proposed for the construction of a complete system of intermediate states in the perturbation problem for stationary states of many-fermion systems. A time-independent expansion of the Green's function is constructed with respect to a complete set of antisymmetric functions, which include quasiparticle excitations of Sturm type. It is shown that in the case of single-particle perturbations one can completely avoid integration over continuum states, and in the case of perturbations that contain two-body interactions the multiplicity of the integrals can be significantly reduced. A diagram technique is developed for calculating the terms of the perturbation theory expansion.
@article{TMF_1983_56_2_a10,
     author = {A. I. Sherstyuk},
     title = {Sturm expansions in many-fermion problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {272--287},
     year = {1983},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a10/}
}
TY  - JOUR
AU  - A. I. Sherstyuk
TI  - Sturm expansions in many-fermion problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 272
EP  - 287
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a10/
LA  - ru
ID  - TMF_1983_56_2_a10
ER  - 
%0 Journal Article
%A A. I. Sherstyuk
%T Sturm expansions in many-fermion problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 272-287
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a10/
%G ru
%F TMF_1983_56_2_a10
A. I. Sherstyuk. Sturm expansions in many-fermion problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 2, pp. 272-287. http://geodesic.mathdoc.fr/item/TMF_1983_56_2_a10/

[1] Taules D., Kvantovaya mekhanika sistem mnogikh chastits, Mir, M., 1975, 50 pp.

[2] Veselov M. G., Labzovskii L. N., Problemy teoreticheskoi fiziki, t. 1, LGU, L., 1974, 7–54 | MR

[3] Kelly H. P., Phys. Rev., 136:3B (1964), 869–912 ; 144:1 (1966), 39–55 ; Adv. Theor. Phys., 2 (1968), 75–169 | DOI | MR | DOI

[4] Huzinaga S., Arnau C., Phys. Rev., A1:5 (1970), 1285–1288 | DOI

[5] Yonger S. M., Phys. Rev., A21:5 (1980), 1364–1375 | DOI

[6] Rotenberg M., Adv. Atom. and Molec. Phys., 1970, no. 6, 233–268 | DOI

[7] Gruzdev P. F., Sherstyuk A. I., Izv. AN SSSR, ser. fiz., 41:12 (1977), 2477–2485 | MR

[8] Gazeau I. P., J. Math. Phys., 19:5 (1978), 1041–1048 | DOI | MR

[9] Sherstyuk A. I., TMF, 21:2 (1974), 224–232 ; ЖЭТФ, 62:4 (1972), 1238–1247 | MR | MR

[10] Khristenko S. V., TMF, 22:1 (1975), 31–45

[11] Sherstyuk A. I,, Yakovleva N. S., ZhVM i MF, 21:1 (1981), 113–126 | MR

[12] Sherstyuk A. I., Gruzdev P. F., Opt. i spektr., 42:6 (1977), 1198–1200

[13] Gruzdev P. F., Soloveva G. S., Sherstyuk A. I., Opt. i spektr., 53:1 (1982), 3–5

[14] Goldstone J., Proc. Roy. Soc., A239:1217 (1957), 267–279 | DOI | MR | Zbl

[15] Khristenko S. V., Vetchinkin S. I., Opt. i spektr., 37:6 (1974), 1017–1021