The inverse problem of quantum mechanics for a linear potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 1, pp. 74-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The applicability of the Gel'fand–Levitan method for solving the inverse problem in the case of potentials that increase unboundedly at infinity is demonstrated for the example of a linear potential. The following cases are considered: 1) change in the normalization of one of the eigenvalues; 2) complete elimination of one of the eigenstates; 3) inclusion in the spectrum of a new state with arbitrary energy. For all three cases, the asymptotic behavior of the new wave functions and the corrections to the reference (linear) potential are calculated.
@article{TMF_1983_56_1_a6,
     author = {V. B. Gostev and V. S. Mineev and A. R. Frenkin},
     title = {The inverse problem of quantum mechanics for a~linear potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--79},
     year = {1983},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a6/}
}
TY  - JOUR
AU  - V. B. Gostev
AU  - V. S. Mineev
AU  - A. R. Frenkin
TI  - The inverse problem of quantum mechanics for a linear potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 74
EP  - 79
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a6/
LA  - ru
ID  - TMF_1983_56_1_a6
ER  - 
%0 Journal Article
%A V. B. Gostev
%A V. S. Mineev
%A A. R. Frenkin
%T The inverse problem of quantum mechanics for a linear potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 74-79
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a6/
%G ru
%F TMF_1983_56_1_a6
V. B. Gostev; V. S. Mineev; A. R. Frenkin. The inverse problem of quantum mechanics for a linear potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 1, pp. 74-79. http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a6/

[1] Eichten E., Gottfried K., Kinoshita T., Lane K. D., Yan T. M., Phys. Rev., D17:11 (1978), 3090-3-117; D21:1 (1980), 203–233

[2] Buchmüller W., Tye S. H. H., The quark-antiquark potential and QCD, Preprint Fermilab-Conf-81/38-THY, Batavia, USA, 1981

[3] Gostev V. B., Mineev V. S., Frenkin A. R., Ekvidistantnyi spektr v kvantovoi mekhanike. Obratnaya zadacha, Preprint 1981/19, Fizicheskii fakultet MGU, M., 1981

[4] Gostev V. B., Mineev V. S., Frenkin A. R., DAN SSSR, 262:6 (1982), 1364–1367 | MR

[5] Weil H., Math. Ann., 68 (1910), 220–269 | DOI | MR

[6] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. I, gl. 2, 4 ; т. II, гл. 19, ИЛ, М., 1960 | MR | Zbl

[7] Spravochnik po spetsialnym funktsiyam, eds. Abramovits M., Stigan I. M., Nauka, M., 1979, 264–270 | MR

[8] Nyuton R., Teoriya rasseyaniya voln i chastits, Mir, M., 1969, 560–563 | MR

[9] Abraham P. B., Moses H. E., Phys. Rev., A22:4 (1980), 1333–1340 | DOI | MR

[10] Adamyan M. N., TMF, 48:1 (1981), 70–79 | MR

[11] Shadan K., Sabate P., Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1980, 408 pp. | MR

[12] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966, 521–525 | MR | Zbl