The inverse problem of quantum mechanics for a~linear potential
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 1, pp. 74-79
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The applicability of the Gel'fand–Levitan method for solving the inverse problem in
the case of potentials that increase unboundedly at infinity is demonstrated for the
example of a linear potential. The following cases are considered: 1) change in the normalization of one of the eigenvalues; 2) complete elimination of one of the eigenstates; 3) inclusion in the spectrum of a new state with arbitrary energy. For all three cases, the asymptotic behavior of the new wave functions and the corrections to the reference (linear) potential are calculated.
			
            
            
            
          
        
      @article{TMF_1983_56_1_a6,
     author = {V. B. Gostev and V. S. Mineev and A. R. Frenkin},
     title = {The inverse problem of quantum mechanics for a~linear potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--79},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a6/}
}
                      
                      
                    TY - JOUR AU - V. B. Gostev AU - V. S. Mineev AU - A. R. Frenkin TI - The inverse problem of quantum mechanics for a~linear potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1983 SP - 74 EP - 79 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a6/ LA - ru ID - TMF_1983_56_1_a6 ER -
V. B. Gostev; V. S. Mineev; A. R. Frenkin. The inverse problem of quantum mechanics for a~linear potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 1, pp. 74-79. http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a6/
