Construction of dynamical symmetry group of the relativistic harmonic oscillator by the Infeld–Hull factorization method
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 1, pp. 154-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Infeld–Hull factorization method is used to find operators that raise and lower the orbital quantum number $l$, and the dynamical symmetry group is constructed for the model of a harmonic oscillator in the relativistic configuration $\mathbf r$ representation.
@article{TMF_1983_56_1_a15,
     author = {N. M. Atakishiyev},
     title = {Construction of dynamical symmetry group of the relativistic harmonic oscillator by the {Infeld{\textendash}Hull} factorization method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {154--160},
     year = {1983},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a15/}
}
TY  - JOUR
AU  - N. M. Atakishiyev
TI  - Construction of dynamical symmetry group of the relativistic harmonic oscillator by the Infeld–Hull factorization method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 154
EP  - 160
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a15/
LA  - ru
ID  - TMF_1983_56_1_a15
ER  - 
%0 Journal Article
%A N. M. Atakishiyev
%T Construction of dynamical symmetry group of the relativistic harmonic oscillator by the Infeld–Hull factorization method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 154-160
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a15/
%G ru
%F TMF_1983_56_1_a15
N. M. Atakishiyev. Construction of dynamical symmetry group of the relativistic harmonic oscillator by the Infeld–Hull factorization method. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 1, pp. 154-160. http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a15/

[1] Infeld L., Hull T. E., Rev. Mod. Phys., 23:1 (1951), 21–68 | DOI | MR | Zbl

[2] Hermann R., J. Math. Phys., 22:6 (1981), 1163–1167 | DOI | MR | Zbl

[3] Donkov A. D., Kadyshevskii V. G., Mateev M. D., Mir-Kasimov R. M., TMF, 8:1 (1971), 61–72 | MR

[4] Atakishiev N. M., Mir-Kasimov R. M., Nagiev Sh. M., Tr. IV Mezhdunarodnogo seminara po fizike vysokikh energii i kvantovoi teorii polya, t. 2, Protvino, 1981, 180–193

[5] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., Nuovo Cim., 55A:2 (1968), 233–257 | DOI

[6] Barut A. O., Dynamical Groups and Generalized Symmetries in Quantum Theory, Chistchurch, New Zealand, 1971 | Zbl

[7] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[8] Miller W., Jr., Symmetry Groups and Their Applications, Academic Press, N.-Y.–London, 1972 | MR | Zbl

[9] Goshen S., Lipkin H. J., Ann. Phys., 6:4 (1959), 301–318 | DOI | MR

[10] Barut A. O., Phys. Rev., 139B:5 (1965), 1433–1436 | DOI | MR

[11] Schödinger, Proc. Roy. Irish. Acad., A46 (1941), 183–206

[12] Atakishiev N. M., Mir-Kasimov R. M., Nagiev Sh. M., TMF, 44:1 (1980), 47–62 | MR