Nonlinear realization of extended superconformal symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cartan forms, infinitesimal and finite transformations of the Goldstone and matter superfields, the generators, torsion, and curvature are calculated for the nonlinear realization of extended superconformal symmetry. A covariant condition that eliminates goldstonions of the special superconformal transformations is discussed, together with a chiral realization. A “minimal” effective action for the Goldstone fields parametrized by ordinary space-time coordinates is constructed.
@article{TMF_1983_56_1_a0,
     author = {V. P. Akulov and I. A. Bandos and V. G. Zima},
     title = {Nonlinear realization of extended superconformal symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--14},
     year = {1983},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a0/}
}
TY  - JOUR
AU  - V. P. Akulov
AU  - I. A. Bandos
AU  - V. G. Zima
TI  - Nonlinear realization of extended superconformal symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 3
EP  - 14
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a0/
LA  - ru
ID  - TMF_1983_56_1_a0
ER  - 
%0 Journal Article
%A V. P. Akulov
%A I. A. Bandos
%A V. G. Zima
%T Nonlinear realization of extended superconformal symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 3-14
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a0/
%G ru
%F TMF_1983_56_1_a0
V. P. Akulov; I. A. Bandos; V. G. Zima. Nonlinear realization of extended superconformal symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 56 (1983) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_1983_56_1_a0/

[1] Van Nienwenhuizen P., Phys. Rep., 68 (1981), 189–398 | DOI | MR

[2] De Wit B., van Holten J. W., van Proeyen A., Nucl. Phys., B184:1 (1981), 77–108 | DOI

[3] Ivanov E. A., Ogievetskii V. I., Pisma v ZhETF, 23:11 (1976), 661–664

[4] Borisov A. B., Ogievetskii V. I., TMF, 21:3 (1974), 329–342 | MR

[5] Ivanov E. A., Ogievetskii V. I., TMF, 25:2 (1975), 164–177 | MR

[6] Pletnev N. G., TMF, 32:1 (1977), 54–58 | MR | Zbl

[7] Salam A., Strathdee J., Phys. Rev., 184:5 (1969), 1760–1768 | DOI | MR

[8] Goldstone J., Nuovo Cim., 19:1 (1961), 154–164 ; Gilbert W., Phys. Rev. Lett., 12:25 (1964), 713–714 ; Streater R. F., Phys. Rev. Lett., 15:11 (1965), 475–476 | DOI | MR | Zbl | DOI | MR | DOI | MR

[9] Isham C. J., Salam A., Strathdee J., Ann. of Phys., 62:1 (1971), 98–119 | DOI | MR | Zbl

[10] Haag R., Lopuszanski J. T., Sohnius M., Nucl. Phys., B88:2 (1975), 257–274 | DOI | MR

[11] Volkov D. V., Fenomenologicheskii lagranzhian vzaimodeistviya goldstounovskikh chastits, Preprint ITF-69-75, ITF, Kiev, 1969; ЭЧАЯ, 4:1 (1973), 3–41 | MR

[12] Volkov D. V., Akulov V. P., Goldstounovskie polya so spinom polovina, Preprint ITF-73-51R, ITF, Kiev, 1973

[13] Ferrara S., Kaku M., Townsend P. K., van Nienwenhuizen P., Nucl. Phys., B129:1 (1977), 125–134 | DOI | MR

[14] Ogievetskii V. I., Mezinchesku L., UFN, 117:4 (1975), 637–683 | DOI | MR

[15] Pakhomov V. F., Matematicheskie zametki, 16:1 (1974), 65–74 | MR | Zbl