Theory of bound states of fermions in many-body systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 448-460 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of two fermions (of species $a$ and $b$) in a many-body system that can contain particles of the same species is considered. The special case of a resonance medium is discussed. The spectrum and damping of the two-particle excitations of the system are determined from the spectral density of the two-particle Green's function. The Bethe–Salpeter equation is used to derive an effective wave equation and an effective two-particle Hamiltonian whose real part determines the spectrum and whose imaginary part determines the damping of the two-particle states. The effective Hamiltonian takes into account the influence of the surrounding medium on the considered pair of particles, this influence being manifested in the form of a dynamic self-energy of the particles, in a modified dynamic interaction, and in exchange effects with fermions of the surrounding medium at finite temperature and density.
@article{TMF_1983_55_3_a9,
     author = {K. Kilimann and D. Kremp and G. R\"opke},
     title = {Theory of bound states of fermions in many-body systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {448--460},
     year = {1983},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a9/}
}
TY  - JOUR
AU  - K. Kilimann
AU  - D. Kremp
AU  - G. Röpke
TI  - Theory of bound states of fermions in many-body systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 448
EP  - 460
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a9/
LA  - ru
ID  - TMF_1983_55_3_a9
ER  - 
%0 Journal Article
%A K. Kilimann
%A D. Kremp
%A G. Röpke
%T Theory of bound states of fermions in many-body systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 448-460
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a9/
%G ru
%F TMF_1983_55_3_a9
K. Kilimann; D. Kremp; G. Röpke. Theory of bound states of fermions in many-body systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 448-460. http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a9/

[1] Noks R., Teoriya eksitonov, Mir, M., 1966

[2] Karimkhodzhaev A., Faustov R. N., TMF, 32:1 (1977), 44–53

[3] Mahanti S. D., Varma C. M., Phys. Rev., B6 (1972), 2209 | DOI

[4] Sak J., Phys. Rev., B6 (1972), 2226 | DOI

[5] Shindo K., J. Phys. Soc. (Japan), 29 (1970), 287 | DOI

[6] Zimmermann R., Kilimann K., Kraeft W. D., Kremp D., Röpke G., Phys. Stat. Sol. (b), 90 (1978), 175 | DOI

[7] Röpke G., Kilimann K., Kraeft W. D., Kremp D., Phys. Lett A, 68A (1978), 329 ; Kilimann K., Kraeft W. D., Kremp D., Phys. Lett A, 61A (1977), 393 | DOI | DOI

[8] Röpke G., Seifert T., Stolz H., Zimmerman R., Phys. Stat. Sol. (b), 100 (1980), 215 | DOI

[9] Stolz H., Zimmermann R., Röpke G., Phys. Stat. Sol. (b), 105 (1981), 585 | DOI

[10] Manykin E. A., Ozhovan M. I., Poluektov P. P., TMF, 49:2 (1981), 283–288

[11] Kilimann K., Doctor thesis, Rostock, 1978

[12] Hauck H., Tran Thoai D. B., Phys. Stat. Sol. (b), 98 (1980), 581 | DOI

[13] Rogers F. J., Gaboske H. G., Harwood D. J., Phys. Rev. A, A1 (1970), 1577 | DOI