On a class of exact solutions of quasipotential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 349-360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that quasipotentials equations [1, 2] can be reduced to second-order differential equations in the rapidity space if the quasipotentials are chosen in the form of functions that are local in the Lobachevskii momentum space, their images in the relativistic configuration representation being even functions of $r$. For quasipotentials of the form $V(r)\sim r^{-2}$, $(r^2\pm a^2)^{-1}$ in the chiral limit, when the mass of a bound state is equal to zero, exact wave functions are obtained.
@article{TMF_1983_55_3_a2,
     author = {V. N. Kapshai and S. P. Kuleshov and N. B. Skachkov},
     title = {On a~class of exact solutions of quasipotential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {349--360},
     year = {1983},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a2/}
}
TY  - JOUR
AU  - V. N. Kapshai
AU  - S. P. Kuleshov
AU  - N. B. Skachkov
TI  - On a class of exact solutions of quasipotential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 349
EP  - 360
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a2/
LA  - ru
ID  - TMF_1983_55_3_a2
ER  - 
%0 Journal Article
%A V. N. Kapshai
%A S. P. Kuleshov
%A N. B. Skachkov
%T On a class of exact solutions of quasipotential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 349-360
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a2/
%G ru
%F TMF_1983_55_3_a2
V. N. Kapshai; S. P. Kuleshov; N. B. Skachkov. On a class of exact solutions of quasipotential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 349-360. http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a2/

[1] Logunov A. A., Tavkhelidze A. N., Nuovo Cim., 29:2 (1963), 380–400 | DOI | MR

[2] Kadyshevsky V. G., Nucl. Phys., B6:1 (1968), 125–137 | DOI

[3] Khrustalev O. A., Kvazipotentsialnoe uravnenie v $x$-prostranstve, Preprint No 69-24, IFVE, Serpukhov, 1969

[4] Arkhipov A. A., Savrin V. I., Ob odnom metode resheniya kvazipotentsialnogo uravneniya, Preprint No 82-21, IFVE, Serpukhov, 1982 | MR

[5] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., Nuovo Cim., 55A:2 (1968), 233–257 ; Кадышевский В. Г., Мир-Касимов Р. М., Скачков Н. Б., ЭЧАЯ, 2:3 (1972), 635–690 | DOI

[6] Kadyshevskii V. G., Mir-Kasimov R. M., Friman M., YaF, 9:3 (1969), 646–652 | MR

[7] Arbuzov B. A., Phys. Lett., 13:1 (1964), 951–955 ; Filippov A. T., Nuovo Cim., 38:5 (1966), 596–604 | DOI | MR

[8] Gogokhiya V. Sh., Filippov A. T., TMF, 21:1 (1974), 37–48 ; Гогохия В. Ш., Мавло Д. П., Филиппов А. Т., ТМФ, 27 (1976), 323–332 | MR | Zbl

[9] Filippov A. T., Puzynin I. V., Mavlo D. P., J. Comput. Phys., 22:2 (1976), 150–170 | DOI | MR

[10] Beitman G., Erdeii A., Vysshie transtsendentnye funktsii, t. 1, 2, Nauka, M., 1974 | MR

[11] Shapiro I. S., DAN SSSR, 106:4 (1956), 647–649 | Zbl

[12] Chernikov N. A., EChAYa, 1973, no. 3, 733–750; Смородинский Я. А., Атомная энергия, 14:1 (1963), 110–121