On a~class of exact solutions of quasipotential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 349-360
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that quasipotentials equations [1, 2] can be reduced to second-order differential equations in the rapidity space if the quasipotentials are chosen in the form of functions that are local in the Lobachevskii momentum space, their images in the relativistic configuration representation being even functions of $r$. For quasipotentials of the form $V(r)\sim r^{-2}$, $(r^2\pm a^2)^{-1}$
in the chiral limit, when the mass of a bound state is equal to zero, exact wave
functions are obtained.
@article{TMF_1983_55_3_a2,
author = {V. N. Kapshai and S. P. Kuleshov and N. B. Skachkov},
title = {On a~class of exact solutions of quasipotential equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {349--360},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a2/}
}
TY - JOUR AU - V. N. Kapshai AU - S. P. Kuleshov AU - N. B. Skachkov TI - On a~class of exact solutions of quasipotential equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1983 SP - 349 EP - 360 VL - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a2/ LA - ru ID - TMF_1983_55_3_a2 ER -
V. N. Kapshai; S. P. Kuleshov; N. B. Skachkov. On a~class of exact solutions of quasipotential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 349-360. http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a2/