Sturm representation of the Green's function of an arbitrary number of particles interacting by the oscillator law
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 461-468
Voir la notice de l'article provenant de la source Math-Net.Ru
A Sturm representation is obtained for the Green's function of an arbitrary number of particles interacting with one another in accordance with the oscillator law. Use is made of the $K$ harmonics of the method of multidimensional hyperspherical functions and the eigenfunctions of the generalized eigenvatue problem for the oscillator potential. From the obtained results, the Sturm representation for the Green's function of noninteracting particles is obtained as a special case at oscillator frequency $\omega=0$.
@article{TMF_1983_55_3_a10,
author = {A. A. Sadovoi},
title = {Sturm representation of the {Green's} function of an arbitrary number of particles interacting by the oscillator law},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {461--468},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a10/}
}
TY - JOUR AU - A. A. Sadovoi TI - Sturm representation of the Green's function of an arbitrary number of particles interacting by the oscillator law JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1983 SP - 461 EP - 468 VL - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a10/ LA - ru ID - TMF_1983_55_3_a10 ER -
%0 Journal Article %A A. A. Sadovoi %T Sturm representation of the Green's function of an arbitrary number of particles interacting by the oscillator law %J Teoretičeskaâ i matematičeskaâ fizika %D 1983 %P 461-468 %V 55 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a10/ %G ru %F TMF_1983_55_3_a10
A. A. Sadovoi. Sturm representation of the Green's function of an arbitrary number of particles interacting by the oscillator law. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 461-468. http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a10/