Charged vector particles in a magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 335-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of exact solutions of the Proca equations in a magnetic field are investigated for arbitrary value of the phenomenological parameter $k$ that characterizes the magnetic moment of the particle. For the case $k=1$, which corresponds to the Weinberg–Salam model, a spin operator is constructed whose eigeuvalues can be used to classify the solutions. A Green's function is constructed for the Weinberg–Satam charged vector boson in the unitary gauge.
@article{TMF_1983_55_3_a1,
     author = {I. A. Obukhov and V. K. Peres-Fernandes and I. M. Ternov and V. R. Khalilov},
     title = {Charged vector particles in a~magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {335--348},
     year = {1983},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a1/}
}
TY  - JOUR
AU  - I. A. Obukhov
AU  - V. K. Peres-Fernandes
AU  - I. M. Ternov
AU  - V. R. Khalilov
TI  - Charged vector particles in a magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 335
EP  - 348
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a1/
LA  - ru
ID  - TMF_1983_55_3_a1
ER  - 
%0 Journal Article
%A I. A. Obukhov
%A V. K. Peres-Fernandes
%A I. M. Ternov
%A V. R. Khalilov
%T Charged vector particles in a magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 335-348
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a1/
%G ru
%F TMF_1983_55_3_a1
I. A. Obukhov; V. K. Peres-Fernandes; I. M. Ternov; V. R. Khalilov. Charged vector particles in a magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 3, pp. 335-348. http://geodesic.mathdoc.fr/item/TMF_1983_55_3_a1/

[1] Konopleva N. P., Popov V. N., Kalibrovochnye polya, Atomizdat, M., 1972, 240 pp. | MR

[2] Elementarnye chastitsy, no. III, Atomizdat, M., 1973, 123 pp.

[3] Bernstein Dzh., Sb. NFF, Kvantovaya teoriya kalibrovochnykh polei, no. 8, Mir, M., 1977, 120–240

[4] Ross G. G., Rep. Prog. Phys., 44:6 (1981), 655–718 | DOI

[5] Sokolov A. A., Ternov I. M., Relyativistskii elektron, Nauka, M., 1974, 391 pp.

[6] Grib A. A., Mamaev S. G., Mostepanenko V. M., Kvantovye effekty v intensivnykh vneshnikh polyakh, Atomizdat, M., 1980, 296 pp.

[7] Tsai Wu-yang, Yildiz A., Phys. Rev., D4:12 (1971), 3643–3648

[8] Obukhov I. A., Peres-Fernandes V. K., Vektornaya chastitsa v postoyannykh magnitnom i elektricheskom polyakh, Deponirovano v VINITI, No 4088-81 Dep.

[9] Vanyashin V. S., Reznikov Yu. Yu., Skalozub V. V., YaF, 33:2 (1981), 429–434

[10] Salam A., Word J. O., Phys. Lett., 13:2 (1964), 168–170 | DOI | MR

[11] Menskii M. B., Metod indutsirovannykh predstavlenii: prostranstvo-vremya i kontseptsiya chastits, Nauka, M., 1976, 288 pp.

[12] Miller U. (ml.), Simmetriya i razdelenie peremennykh, Mir, M., 1981, 342 pp. | MR

[13] Rumer Yu. B., Fet A. I., Teoriya grupp i kvantovannye polya, Nauka, M., 1977, 248 pp. | MR

[14] Sinkhrotronnoe izluchenie, Nauka, M., 1966, 227 pp.

[15] Migdal A. B., Fermiony i bozony v silnykh polyakh, Nauka, M., 1978, 272 pp.

[16] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976, 480 pp. | MR

[17] Ritus V. I., Tr. FIAN, 111 (1979), 3–154

[18] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979, 319 pp. | MR