Symmetries of scalar fields. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 2, pp. 197-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A definition of the generating operator of a system of nonlinear differential equations is proposed, and the connection between such operators and Lie–Bäcklund algebras is established. For classical nonlinear scalar fields in $n$-dimensional ($n>2$) space-time interacting through a potential the Lie–Bäcklund algebra is investigated, and it is concluded that there are no differential generating operators. It is shown that in nonlinear theory in $n$-dimensional ($n>2$) space-time the number of independent local conservation laws is always finite.
@article{TMF_1983_55_2_a3,
     author = {A. G. Meshkov},
     title = {Symmetries of scalar {fields.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {197--204},
     year = {1983},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a3/}
}
TY  - JOUR
AU  - A. G. Meshkov
TI  - Symmetries of scalar fields. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 197
EP  - 204
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a3/
LA  - ru
ID  - TMF_1983_55_2_a3
ER  - 
%0 Journal Article
%A A. G. Meshkov
%T Symmetries of scalar fields. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 197-204
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a3/
%G ru
%F TMF_1983_55_2_a3
A. G. Meshkov. Symmetries of scalar fields. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 2, pp. 197-204. http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a3/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi rasseyaniya, Nauka, M., 1980 | MR

[2] Calogero F., Degasperis A., Nuovo Cim., 32B:2 (1976), 201–242 | DOI | MR

[3] Kulish P. P., Zap. nauchn. seminarov LOMI, 96 (1980), 105–112 | MR | Zbl

[4] Shapovalov V. N., Izv. VUZov, fizika, 1977, no. 6, 57–70

[5] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Mir, M., 1975 | MR

[6] Kaptsov O. V., DAN SSSR, 262:5 (1982), 1056–1059 | MR | Zbl

[7] Zhiber A. V., Shabat A. V., DAN SSSR, 247:5 (1979), 1103–1107 | MR

[8] Mikhailov A. V., Pisma v ZhETF, 30:7 (1979), 443–448

[9] Zhiber A. V., Ibragimov N. Kh., Shabat A. B., DAN SSSR, 249:1 (1979), 26–29 | MR | Zbl

[10] Leznov A. N., Smirnov V. G., Shabat A. B., TMF, 51:1 (1982), 10–21 | MR | Zbl

[11] Meshkov A. G., Algebry Li-Beklunda uravnenii vida $u_{00}^a=H^a(x, u, u_\nu, u_{0i}, u_{ij})$ v vysshikh razmernostyakh, Deponirovano v VINITI. Reg.No2136-81 Dep.

[12] Meshkov A. G., Polnaya integriruemost v vysshikh izmereniyakh. I: Odnokomponentnoe skalyarnoe pole, Deponirovano v VINITI. Reg.No4660-80 Dep.

[13] Galindo A., Martinez L., Lett. Math. Phys., 2:5 (1978), 385–390 | DOI | MR | Zbl

[14] Galindo A., Anales de fisica, 75:2 (1979), 81–84

[15] Aldersley S. J., J. Math. Phys., 20:3 (1979), 522–531 | DOI | MR | Zbl