Symmetries of scalar fields.~I
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 2, pp. 197-204
Voir la notice de l'article provenant de la source Math-Net.Ru
A definition of the generating operator of a system of nonlinear differential equations is proposed, and the connection between such operators and Lie–Bäcklund algebras is established. For classical nonlinear scalar fields in $n$-dimensional ($n>2$) space-time interacting through a potential the Lie–Bäcklund algebra is investigated, and it is concluded that there are no differential generating operators. It is shown that in nonlinear theory in $n$-dimensional ($n>2$) space-time the number of independent local
conservation laws is always finite.
@article{TMF_1983_55_2_a3,
author = {A. G. Meshkov},
title = {Symmetries of scalar {fields.~I}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {197--204},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a3/}
}
A. G. Meshkov. Symmetries of scalar fields.~I. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 2, pp. 197-204. http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a3/