Perturbation theory and equation of state for dense condensed media
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 2, pp. 305-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new variant of thermodynamic perturbation theory in the canonical ensemble with specification of the state of the zeroth approximation is proposed. An equation of state is derived under the assumption that the relative change in the volume is small. This condition holds in a wide range of pressures in dense condensed media far from phase transition points. It is shown that the obtained equation of state can be used in the case of multicomponent systems provided the single-fluid approximation of the mean potential model is valid.
@article{TMF_1983_55_2_a13,
     author = {V. M. Sysoev},
     title = {Perturbation theory and equation of state for dense condensed media},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {305--312},
     year = {1983},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a13/}
}
TY  - JOUR
AU  - V. M. Sysoev
TI  - Perturbation theory and equation of state for dense condensed media
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 305
EP  - 312
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a13/
LA  - ru
ID  - TMF_1983_55_2_a13
ER  - 
%0 Journal Article
%A V. M. Sysoev
%T Perturbation theory and equation of state for dense condensed media
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 305-312
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a13/
%G ru
%F TMF_1983_55_2_a13
V. M. Sysoev. Perturbation theory and equation of state for dense condensed media. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 2, pp. 305-312. http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a13/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946, 119 pp. | MR

[2] Sysoev V. M., Ukr. fiz. zhurn., 25:1 (1980), 123–130

[3] Sysoev V. M., Ukr. fiz. zhurn., 25:6 (1980), 953–959

[4] Street W. B., Physica, 76:1 (1974), 59–72 | DOI

[5] Bridgman P. W., Proc. Am. Acad. Arts and Sci., 72:5 (1938), 207–225 | DOI | MR

[6] Slater J. S., Introduction to Chemical Physics, McGraw Hill Book Company, New York, 1939, 312 pp.

[7] Stell G., The Equilibrium Theory of Classical Fluids, eds. Frisch H. L., Lebowitz J. L., W. A. Benjamin Inc., New York, Amsterdam, 1964, II-171–II-266

[8] Stell G., Phase Transition and Critical Phenomena, 5B, eds. Domb C., Green M. S., Academic Press, London, 1976, 205–258 | MR

[9] Zwanzig R. W., Kirkwood J. G., Stripp K. F., Oppenheim I., J. Chem. Phys., 21:7 (1953), 1268–1271 | DOI

[10] Rowlinson J. S., Liquids and Liquid Mixtures, Butterworth, London, 1969, 372 pp. | MR

[11] Macdonald J. R., Rew. Mod. Phys., 41:2 (1969), 316–349 | DOI

[12] Reinolds C. L., Couchman P. R., Phys. Stat. Sol., A42:1 (1977), K47–K52 | DOI

[13] Tsiklis D. S., Plotnye gazy, Khimiya, M., 1977, 165 pp.

[14] Prigogine I., The Molecular Theory of Solutions, North-Holland Publishing Company, Amsterdam, 1957, 448 pp. | MR | Zbl