On the discrete spectrum of the energy operator of one- and two-dimensional quantum three-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 2, pp. 269-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the energy operator of a system of three one-dimensional or two-dimeasional quantum particles conditions are found under which the discrete spectrum is finite in spaces of functions of given symmetry. It follows from the obtained results in particular that the Efimov effect is absent for the considered systems.
@article{TMF_1983_55_2_a10,
     author = {S. A. Vugal'ter and G. M. Zhislin},
     title = {On the discrete spectrum of the energy operator of one- and two-dimensional quantum three-particle systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {269--281},
     year = {1983},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a10/}
}
TY  - JOUR
AU  - S. A. Vugal'ter
AU  - G. M. Zhislin
TI  - On the discrete spectrum of the energy operator of one- and two-dimensional quantum three-particle systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 269
EP  - 281
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a10/
LA  - ru
ID  - TMF_1983_55_2_a10
ER  - 
%0 Journal Article
%A S. A. Vugal'ter
%A G. M. Zhislin
%T On the discrete spectrum of the energy operator of one- and two-dimensional quantum three-particle systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 269-281
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a10/
%G ru
%F TMF_1983_55_2_a10
S. A. Vugal'ter; G. M. Zhislin. On the discrete spectrum of the energy operator of one- and two-dimensional quantum three-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 55 (1983) no. 2, pp. 269-281. http://geodesic.mathdoc.fr/item/TMF_1983_55_2_a10/

[1] Simenog I. V., Regularization of the zero-range interaction limit in a one- and two-dimensional many-particle problems, Preprint ITP-80-12 E, ITP, Kiev, 1980

[2] Bruch L. W., Tjon J. A., Phys. Rev., A19:2 (1979), 425–432 | DOI

[3] Lim T. K., Maurone P. A., Phys. Rev., B22:3 (1980), 1467–1469 | DOI | MR

[4] Bretz M., Dach J. G., Hickernell D. C., McLear E. O., Vilches E. O., Phys. Rev., A8 (1973), 1589 | DOI

[5] Efimov V., Phys. Lett., B33:8 (1970), 563–564 | DOI

[6] Zhislin G. M., TMF, 21:1 (1974), 60–73 | MR

[7] Vugalter S. A., Zhislin G. M., TMF, 32:1 (1977), 70–87 | MR

[8] Vugalter S. A., Zhislin G. M., Rep. Math. Phys. (to appear)

[9] Vugalter S. A., Zhislin G. M., Commun. Math. Phys. (to appear) | MR

[10] Sigalov A. G., Sigal I. M., TMF, 5:1 (1970), 73–93 | MR

[11] Iorgens K., Vaidman I., Spektralnye svoistva gamiltonovykh operatorov, Mir, M., 1976, 152 pp. | MR

[12] Yafaev D. R., Matem. sb., 94:4 (1974), 567–593 | MR | Zbl

[13] Uchiyama J., Publ. RIMS, Kyoto Univ., A5:1 (1969), 51–63 | DOI | MR | Zbl

[14] Birman M. Sh., Matem. sb., 55:2 (1961), 125–173 | MR

[15] Hunziker W., Helv. Phys. Acta, 39:5 (1966), 451–462 | MR | Zbl

[16] Yafaev D. R., Izv. AN SSSR, ser. matem., 40:4 (1976), 908–948 | MR | Zbl

[17] Antonets M. A., Zhislin G. M., Shereshevskii I. A., “O diskretnom spektre chastichnykh gamiltonianov”, Dop. k kn.: Iorgens K., Vaidman I., Spektralnye svoistva gamiltonovykh operatorov, Mir, M., 1976, 152 pp. | MR

[18] Khamermesh M., Teoriya grupp, Mir, M., 1966, 588 pp. | Zbl